8,946 research outputs found

    Nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations

    Get PDF
    This paper investigates nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations based on a computationally efficient reduced-order fluid-structure interaction model. Cross-flow responses as a result of a steady uniform current are considered. The geometrically nonlinear equations of riser motion are coupled with nonlinear wake oscillators which have been modified to capture the effect of initial curvatures of curved cylinder and to approximate the space-time varying hydrodynamic lift forces. The main objectives are to provide new insights into the vortex-induced vibration characteristics of risers under external and internal resonances and to distinguish nonlinear dynamic behaviors between curved catenary and straight toptensioned risers. The analyses of multi-mode contributions, lock-in regimes, response amplitudes, resonant nonlinear modes and curvatures are carried out and several interesting aspects are highlighted

    Hygrothermomechanical fracture stress criteria for fiber composites with sense-parity

    Get PDF
    Hygrothermomechanical fracture stress criteria are developed and evaluated for unidirectional composites (plies) with sense-parity. These criteria explicity quantify the individual contributions of applied, hygral and thermal stresses as well as couplings among these stresses. The criteria are for maximum stress, maximum strain, internal friction, work-to-fracture and combined-stress fracture. Predicted results obtained indicate that first ply failure will occur at stress levels lower than those predicted using criteria currently available in the literature. Also, the contribution of the various stress couplings (predictable only by fracture criteria with sense-parity) is significant to first ply failure and attendant fracture modes

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    A methodological framework to relate the earthquake-induced frequency reduction to structural damage in masonry buildings

    Get PDF
    none3noThe diffusion of seismic structural health monitoring systems, evaluating the dynamic response of engineering structures to earthquakes, is growing significantly among strategic buildings. The increasing availability of valuable vibration data is being backed by continuously evolving techniques for analysing and assessing structural health and damage. Within this framework, the paper proposes a novel model-driven vibration-based methodology to support the assessment of the damage level in masonry buildings hit by earthquakes. The leading idea is to exploit, in the pre-event phase, synthetic equivalent-frame modelling and nonlinear dynamic analyses to systematically relate the gradual reduction of natural frequencies to increasing levels of structural damage. The resulting behavioural chart (seismic chart) of the building, constructed by employing computational tools and robustly defined on a statistical base, may provide the theoretical expectation to ascertain a certain level of seismic damage, based on the decrease in vibration frequency experimentally identified in the post-event phase. The methodology is firstly formalized, integrating common identification techniques with a novel damage grade estimation procedure, and finally exemplified for a monitored strategic masonry building damaged by the 2016–2017 Central Italy earthquake sequence. The outcomes of this application confirm the operational validity of the methodology, which can be intended as effective support for the decision-making process regarding structural usability and safety in the post-earthquake scenario.mixedSivori D.; Cattari S.; Lepidi M.Sivori, D.; Cattari, S.; Lepidi, M

    Multi-regression analysis to enhance the predictability of the seismic response of buildings

    Get PDF
    Several methodologies for assessing seismic risk extract information from the statistical relationship between the intensity of ground motions and the structural response. The first group is represented by intensity measures (IMs) whilst the latter by engineering demand parameters (EDPs). The higher the correlation between them, the lesser the uncertainty in estimating seismic damage in structures. In general, IMs are composed by either a single (scalar-based IMs) or a group of features of both the ground motion and the structure (vector-valued IMs); the latter category provides higher efficiency to explain EDPs when compared to the first one. This paper explores how to find new vector-valued IMs, which are highly correlated with EDPs, by means of multi-regression analysis. To do so, probabilistic nonlinear dynamic analyses have been performed by considering a seven-story reinforced concrete building as a testbed. At a first stage, 30 scalar-based IMs have been correlated with 4 EDPs (i.e., 120 groups of IM-EDP pairs have been studied). Afterwards, the structural responses have been classified as elastic, inelastic and a combination of both. It has been analyzed how efficiency behaves when making these classifications. Then, 435 vector-valued IMs have been created to enhance the predictability of the scalar EDPs (i.e., 1740 groups of IM-EDP pairs have been analyzed). Again, the most efficient IMs have been identified. Sufficiency, which is another statistical property desired in IMs, has also been examined. Results show that the efficiency and sufficiency to predict the structural response increase when considering vector-valued IMs. This sophistication has important consequences in terms of design or assessment of civil structures.This research has been partially funded by the European Regional Development Fund (ERDF) of the European Union (EU), through project with reference EFA158/16/POCRISC (INTERREG/POCTEFA. EU) and by the Spanish Research Agency (AEI) of the Spanish Ministry of Science and Innovation (MICIN) through project with reference: PID2020-117374RB-I00/AEI/10.13039/501100011033. The support of these institutions is highly recognized and acknowledged. Yeudy F. Vargas-Alzate has been granted an Individual Fellowship (IF) in the research grant program of the Marie Sklodowska-Curie Actions (MSCA), European Union/European (H2020-MSCA-IF-2017) No 799553. This author is deeply grateful to this institution.Peer ReviewedPostprint (published version

    Light-addressable liquid crystal polymer dispersed liquid crystal

    Get PDF
    Scattering-free liquid crystal polymer-dispersed liquid crystal polymer (LCPDLC) films are fabricated by combining a room temperature polymerizable liquid crystal (LC) monomer with a mesogenic photosensitive LC. The morphological and photosensitive properties of the system are analysed with polarized optical microscopy and high resolution scanning and transmission electron microscopy. A two-phase morphology comprised of oriented fibril-like polymeric structures interwoven with nanoscale domains of phase separated LC exists. The nanoscale of the structures enables an absence of scattering which allows imaging through the LCPDLC sample without optical distortion. The use of a mesogenic monomer enables much smaller phase separated domains as compared to nonmesogenic systems. All-optical experiments show that the transmitted intensity, measured through parallel polarizers, can be modulated by the low power density radiation (31 mW/cm2) of a suitable wavelength (532 nm). The reversible and repeatable transmission change is due to the photoinduced trans-cis photoisomerization process. The birefringence variation (0.01) obtained by optically pumping the LCPDLC films allow their use as an alloptical phase modulato
    • 

    corecore