89,141 research outputs found

    Data-driven inference on optimal input-output properties of polynomial systems with focus on nonlinearity measures

    Full text link
    In the context of dynamical systems, nonlinearity measures quantify the strength of nonlinearity by means of the distance of their input-output behaviour to a set of linear input-output mappings. In this paper, we establish a framework to determine nonlinearity measures and other optimal input-output properties for nonlinear polynomial systems without explicitly identifying a model but from a finite number of input-state measurements which are subject to noise. To this end, we deduce from data for the unidentified ground-truth system three possible set-membership representations, compare their accuracy, and prove that they are asymptotically consistent with respect to the amount of samples. Moreover, we leverage these representations to compute guaranteed upper bounds on nonlinearity measures and the corresponding optimal linear approximation model via semi-definite programming. Furthermore, we extend the established framework to determine optimal input-output properties described by time domain hard integral quadratic constraints

    Frequency-Domain Analysis of Linear Time-Periodic Systems

    Get PDF
    In this paper, we study convergence of truncated representations of the frequency-response operator of a linear time-periodic system. The frequency-response operator is frequently called the harmonic transfer function. We introduce the concepts of input, output, and skew roll-off. These concepts are related to the decay rates of elements in the harmonic transfer function. A system with high input and output roll-off may be well approximated by a low-dimensional matrix function. A system with high skew roll-off may be represented by an operator with only few diagonals. Furthermore, the roll-off rates are shown to be determined by certain properties of Taylor and Fourier expansions of the periodic systems. Finally, we clarify the connections between the different methods for computing the harmonic transfer function that are suggested in the literature

    Canonical time-frequency, time-scale, and frequency-scale representations of time-varying channels

    Full text link
    Mobile communication channels are often modeled as linear time-varying filters or, equivalently, as time-frequency integral operators with finite support in time and frequency. Such a characterization inherently assumes the signals are narrowband and may not be appropriate for wideband signals. In this paper time-scale characterizations are examined that are useful in wideband time-varying channels, for which a time-scale integral operator is physically justifiable. A review of these time-frequency and time-scale characterizations is presented. Both the time-frequency and time-scale integral operators have a two-dimensional discrete characterization which motivates the design of time-frequency or time-scale rake receivers. These receivers have taps for both time and frequency (or time and scale) shifts of the transmitted signal. A general theory of these characterizations which generates, as specific cases, the discrete time-frequency and time-scale models is presented here. The interpretation of these models, namely, that they can be seen to arise from processing assumptions on the transmit and receive waveforms is discussed. Out of this discussion a third model arises: a frequency-scale continuous channel model with an associated discrete frequency-scale characterization.Comment: To appear in Communications in Information and Systems - special issue in honor of Thomas Kailath's seventieth birthda
    • …
    corecore