865 research outputs found

    Time-division multiple access based intra-body communication for wearable health tracker

    Get PDF
    In this project, a medium access control utilizing the technique of time-division multiple access was developed for the intra-body communication. A prototype of a wearable health tracker was designed based on a commercially available development kit. The prototype consists of a base unit and three sensor nodes to form a single-hop star topology body area network. Each of the sensor nodes can be interfaced with analog or digital type of wearable sensors to measure human physiological data

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Technologies that assess the location of physical activity and sedentary behavior: a systematic review

    Get PDF
    Background: The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective: This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods: To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions: The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information

    SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis

    Get PDF
    The gait cycle of humans may be influenced by a range of variables, including neurological, orthopedic, and pathological conditions. Thus, gait analysis has a broad variety of applications, including the diagnosis of neurological disorders, the study of disease development, the assessment of the efficacy of a treatment, postural correction, and the evaluation and enhancement of sport performances. While the introduction of new technologies has resulted in substantial advancements, these systems continue to struggle to achieve a right balance between cost, analytical accuracy, speed, and convenience. The target is to provide low-cost support to those with motor impairments in order to improve their quality of life. The article provides a novel automated approach for motion characterization that makes use of artificial intelligence to perform real-time analysis, complete automation, and non-invasive, markerless analysis. This automated procedure enables rapid diagnosis and prevents human mistakes. The gait metrics obtained by the two motion tracking systems were compared to show the effectiveness of the proposed methodology

    A Two-Part Study of Step Counter Accuracy and Ecological Momentary Assessment of Correlates to Total Physical Activity in Phase II Cardiac Rehabilitation Patients

    Get PDF
    Cardiac rehabilitation (CR) is an exercise and education program aimed to help individuals improve fitness levels to return to their careers and social lives. The dropout rate is high, between 25% to 50%, and is related to several factors with an early predictor being higher anxiety levels. It is important to understand the patterns and consistency of this variable as it changes throughout the day and its association physical activity (PA) in order to influence interventions. Ecological momentary assessment (EMA) and actigraphy can capture momentary anxiety and PA, respectively, for temporal analysis. This dissertation includes two studies. Study I examined the error in daily steps of four wearable PA monitors (Fitbit Charge 2, Apple Watch Series 2, Fitbit Zip, ActiGraph GT9X) in phase II CR patients. Nineteen patients wore activity monitors on the ankle, non-dominant wrist, and waist on two days that they attended CR and two days when they did not. Steps from each monitor were compared to criterion steps from the StepWatch (SW). The Fitbit Charge and Apple Watch captured within 10% of SW steps and most other monitors underestimated steps. Study II examined the consistency and intra- and inter-individual patterns in state anxiety (SA) and PA and described the feasibility of mobile EMA for those in phase II CR. Nine adults received four mobile phone surveys each day, assessing momentary SA, for 14 consecutive days while concurrently wearing an ActiGraph GT3X+ across the day. In this study, participants demonstrated consistent, low levels of SA (ICC = 0.68, average = 9.1 on a scale of 6 to 24). The relationship between PA and SA varied between individuals, showing positive and negative slopes for individual participants. Survey compliance rate and ActiGraph wear time met a priori benchmarks for feasibility, but recruitment did not. Lack of smartphone ownership and limited smartphone access at work were the primary challenges to recruitment. This study was the first to describe the patterns of momentary SA for this population. Individual pattern analysis is necessary for classifying individuals, but further study is needed to direct development of interventions based on ecologically valid data

    IMUs: validation, gait analysis and system’s implementation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Falls are a prevalent problem in actual society. The number of falls has been increasing greatly in the last fifteen years. Some falls result in injuries and the cost associated with their treatment is high. However, this is a complex problem that requires several steps in order to be tackled. Namely, it is crucial to develop strategies that recognize the mode of locomotion, indicating the state of the subject in various situations, namely normal gait, step before fall (pre-fall) and fall situation. Thus, this thesis aims to develop a strategy capable of identifying these situations based on a wearable system that collects information and analyses the human gait. The strategy consists, essentially, in the construction and use of Associative Skill Memories (ASMs) as tools for recognizing the locomotion modes. Consequently, at an early stage, the capabilities of the ASMs for the different modes of locomotion were studied. Then, a classifier was developed based on a set of ASMs. Posteriorly, a neural network classifier based on deep learning was used to classify, in a similar way, the same modes of locomotion. Deep learning is a technique actually widely used in data classification. These classifiers were implemented and compared, providing for a tool with a good accuracy in recognizing the modes of locomotion. In order to implement this strategy, it was previously necessary to carry out extremely important support work. An inertial measurement units’ (IMUs) system was chosen due to its extreme potential to monitor outpatient activities in the home environment. This system, which combines inertial and magnetic sensors and is able to perform the monitoring of gait parameters in real time, was validated and calibrated. Posteriorly, this system was used to collect data from healthy subjects that mimicked Fs. Results have shown that the accuracy of the classifiers was quite acceptable, and the neural networks based classifier presented the best results with 92.71% of accuracy. As future work, it is proposed to apply these strategies in real time in order to avoid the occurrence of falls.As quedas são um problema predominante na sociedade atual. O número de quedas tem aumentado bastante nos últimos quinze anos. Algumas quedas resultam em lesões e o custo associado ao seu tratamento é alto. No entanto, trata-se de um problema complexo que requer várias etapas a serem abordadas. Ou seja, é crucial desenvolver estratégias que reconheçam o modo de locomoção, indicando o estado do sujeito em várias situações, nomeadamente, marcha normal, passo antes da queda (pré-queda) e situação de queda. Assim, esta tese tem como objetivo desenvolver uma estratégia capaz de identificar essas situações com base num sistema wearable que colete informações e analise a marcha humana. A estratégia consiste, essencialmente, na construção e utilização de Associative Skill Memories (ASMs) como ferramenta para reconhecimento dos modos de locomoção. Consequentemente, numa fase inicial, foram estudadas as capacidades das ASMs para os diferentes modos de locomoção. Depois, foi desenvolvido um classificador baseado em ASMs. Posteriormente, um classificador de redes neuronais baseado em deep learning foi utilizado para classificar, de forma semelhante, os mesmos modos de locomoção. Deep learning é uma técnica bastante utilizada em classificação de dados. Estes classificadores foram implementados e comparados, fornecendo a uma ferramenta com uma boa precisão no reconhecimento dos modos de locomoção. Para implementar esta estratégia, era necessário realizar previamente um trabalho de suporte extremamente importante. Um sistema de unidades de medição inercial (IMUs), foi escolhido devido ao seu potencial extremo para monitorizar as atividades ambulatórias no ambiente domiciliar. Este sistema que combina sensores inerciais e magnéticos e é capaz de efetuar a monitorização de parâmetros da marcha em tempo real, foi validado e calibrado. Posteriormente, este Sistema foi usado para adquirir dados da marcha de indivíduos saudáveis que imitiram quedas. Os resultados mostraram que a precisão dos classificadores foi bastante aceitável e o classificador baseado em redes neuronais apresentou os melhores resultados com 92.71% de precisão. Como trabalho futuro, propõe-se a aplicação destas estratégias em tempo real de forma a evitar a ocorrência de quedas

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Persuasive digital health technologies for lifestyle behaviour change

    Get PDF
    BACKGROUND. Unhealthy lifestyle behaviours such as physical inactivity are global risk factors for chronic disease. Despite this, a substantial proportion of the UK population fail to achieve the recommended levels of physical activity. This may partly be because the health messages presently disseminated are not sufficiently potent to evoke behaviour change. There has been an exponential growth in the availability of digital health technologies within the consumer marketplace. This influx of technology has allowed people to self-monitor a plethora of health indices, such as their physical activity, in real-time. However, changing movement behaviours is difficult and often predicated on the assumption that individuals are willing to change their lifestyles today to reduce the risk of developing disease years or even decades later. One approach that may help overcome this challenge is to present physiological feedback in parallel with physical activity feedback. In combination, this approach may help people to observe the acute health benefits of being more physically active and subsequently translate that insight into a more physically active lifestyle. AIMS. Study One aimed to review existing studies employing fMRI to examine neurological responses to health messages pertaining to physical activity, sedentary behaviour, smoking, diet and alcohol consumption to assess the capacity for fMRI to assist in evaluating health behaviours. Study Two aimed to use fMRI to evaluate physical activity, sedentary behaviour and glucose feedback obtained through wearable digital health technologies and to explore associations between activated brain regions and subsequent changes in behaviour. Study Three aimed to explore engagement of people at risk of type 2 diabetes using digital health technologies to monitor physical activity and glucose levels. METHODS. Study One was a systematic review of published studies investigating health messages relating to physical activity, sedentary behaviour, diet, smoking or alcohol consumption using fMRI. Study Two asked adults aged 30-60 years to undergo fMRI whilst presented personalised feedback on their physical activity, sedentary behaviour and glucose levels, following a 14-day wear protocol of an accelerometer, inclinometer and flash glucose monitor. Study Three was a six-week, three-armed randomised feasibility trial for individuals at moderate-to-high risk of developing type 2 diabetes. The study used commercially available wearable physical activity (Fitbit Charge 2) and flash glucose (Freestyle Libre) technologies. Group 1 were offered glucose feedback for 4 weeks followed by glucose plus physical activity feedback for 2 weeks (G4GPA2). Group 2 were offered physical activity feedback for 4 weeks followed by glucose plus physical activity feedback for 2 weeks (PA4GPA2). Group 3 were offered glucose plus physical activity feedback for six weeks (GPA6). The primary outcome for the study was engagement, measured objectively by time spent on the Fitbit app, LibreLink app (companion app for the Freestyle Libre) as well as the frequency of scanning the Freestyle Libre and syncing the Fitbit. RESULTS. For Study One, 18 studies were included in the systematic review and of those, 15 examined neurological responses to smoking related health messages. The remaining three studies examined health messages about diet (k=2) and physical activity (k=1). Areas of the prefrontal cortex and amygdala were most commonly activated with increased activation of the ventromedial prefrontal cortex predicting subsequent behaviour (e.g. smoking cessation). Study Two identified that presenting people with personalised feedback relating to interstitial glucose levels resulted in significantly more brain activation when compared with feedback on personalised movement behaviours (P<.001). Activations within regions of the prefrontal cortex were significantly greater for glucose feedback compared with feedback on personalised movement behaviours. Activation in the subgyral area was correlated with moderate-to-vigorous physical activity at follow-up (r=.392, P=.043). In Study Three, time spent on the LibreLink app significantly reduced for G4GPA2 and GPA6 (week 1: 20.2±20 versus week 6: 9.4±14.6min/day, p=.007) and significantly fewer glucose scans were recorded (week 1: 9.2±5.1 versus week 6: 5.9±3.4 scans/day, p=.016). Similarly, Fitbit app usage significantly reduced (week 1: 7.1±3.8 versus week 6: 3.8±2.9min/day p=.003). The number of Fitbit syncs did not change significantly (week 1: 6.9±7.8 versus week 6: 6.5±10.2 syncs/day, p=.752). CONCLUSIONS. Study One highlighted the fact that thus far the field has focused on examining neurological responses to health messages using fMRI for smoking with important knowledge gaps in the neurological evaluation of health messages for other lifestyle behaviours. The prefrontal cortex and amygdala were most commonly activated in response to health messages. Using fMRI, Study Two was able to contribute to the knowledge gaps identified in Study One, with personalised glucose feedback resulting in a greater neurological response than personalised feedback on physical activity and sedentary behaviour. From this, Study Three found that individuals at risk of developing type 2 diabetes were able to engage with digital health technologies offering real-time feedback on behaviour and physiology, with engagement diminishing over time. Overall, this thesis demonstrates the potential for digital health technologies to play a key role in feedback paradigms relating to chronic disease prevention

    Exploring Human-Tech Hybridity at the Intersection of Extended Cognition and Distributed Agency: A Focus on Self-Tracking Devices

    Get PDF
    In an increasingly technology-textured environment, smart, intelligent and responsive technology has moved onto the body of many individuals. Mobile phones, smart watches, and wearable activity trackers (WATs) are just some of the technologies that are guiding, nudging, monitoring, and reminding individuals in their day-to-day lives. These devices are designed to enhance and support their human users, however, there is a lack of attention to the unintended consequences, the technology non-neutrality and the darker sides of becoming human-tech hybrids. Using the extended mind theory (EMT) and agential intra-action, we aimed at exploring how human-tech hybrids gain collective skills and how these are put to use; how agency is expressed and how this affects the interactions; and what the darker sides are of being a human-tech hybrid. Using a qualitative method, we analyzed the experiences of using a WAT, with a specific focus on how the tracker and the individual solve tasks, share competences, develop new skills, and negotiate for agency and autonomy. We contributed with new insight on human-tech hybridity and presented a concept referred to as the agency pendulum, reflecting the dynamism of agency. Finally, we demonstrated how the EMT and agential intra-action as a combined theoretical lens can be used to explore human-tech hybridity
    corecore