2,937 research outputs found

    On the complex dynamics of intracellular ganglion cell light responses in the cat retina

    Full text link
    We recorded intracellular responses from cat retinal ganglion cells to sinusoidal flickering lights and compared the response dynamics to a theoretical model based on coupled nonlinear oscillators. Flicker responses for several different spot sizes were separated in a 'smooth' generator (G) potential and eorresponding spike trains. We have previously shown that the G-potential reveals complex, stimulus dependent, oscillatory behavior in response to sinusoidally flickering lights. Such behavior could be simulated by a modified van der Pol oscillator. In this paper, we extend the model to account for spike generation as well, by including extended Hodgkin-Huxley equations describing local membrane properties. We quantified spike responses by several parameters describing the mean and standard deviation of spike burst duration, timing (phase shift) of bursts, and the number of spikes in a burst. The dependence of these response parameters on stimulus frequency and spot size could be reproduced in great detail by coupling the van der Pol oscillator, and Hodgkin-Huxley equations. The model mimics many experimentally observed response patterns, including non-phase-locked irregular oscillations. Our findings suggest that the information in the ganglion cell spike train reflects both intraretinal processing, simulated by the van der Pol oscillator) and local membrane properties described by Hodgkin-Huxley equations. The interplay between these complex processes can be simulated by changing the coupling coefficients between the two oscillators. Our simulations therefore show that irregularities in spike trains, which normally are considered to be noise, may be interpreted as complex oscillations that might earry information.Whitehall Foundation (S93-24

    Perceptual Model-Driven Authoring of Plausible Vibrations from User Expectations for Virtual Environments

    Get PDF
    One of the central goals of design is the creation of experiences that are rated favorably in the intended application context. User expectations play an integral role in tactile product quality and tactile plausibility judgments alike. In the vibrotactile authoring process for virtual environments, vibra-tion is created to match the user’s expectations of the presented situational context. Currently, inefficient trial and error approaches attempt to match expectations implicitly. A more efficient, model-driven procedure based explicitly on tactile user expectations would thus be beneficial for author-ing vibrations. In everyday life, we are frequently exposed to various whole-body vibrations. Depending on their temporal and spectral proper-ties we intuitively associate specific perceptual properties such as “tin-gling”. This suggests a systematic relationship between physical parame-ters and perceptual properties. To communicate with potential users about such elicited or expected tactile properties, a standardized design language is proposed. It contains a set of sensory tactile perceptual attributes, which are sufficient to characterize the perceptual space of vibration encountered in everyday life. This design language enables the assessment of quantita-tive tactile perceptual specifications by laypersons that are elicited in situational contexts such as auditory-visual-tactile vehicle scenes. Howev-er, such specifications can also be assessed by providing only verbal de-scriptions of the content of these scenes. Quasi identical ratings observed for both presentation modes suggest that tactile user expectations can be quantified even before any vibration is presented. Such expected perceptu-al specifications are the prerequisite for a subsequent translation into phys-ical vibration parameters. Plausibility can be understood as a similarity judgment between elicited features and expected features. Thus, plausible vibration can be synthesized by maximizing the similarity of the elicited perceptual properties to the expected perceptual properties. Based on the observed relationships between vibration parameters and sensory tactile perceptual attributes, a 1-nearest-neighbor model and a regression model were built. The plausibility of the vibrations synthesized by these models in the context of virtual auditory-visual-tactile vehicle scenes was validat-ed in a perceptual study. The results demonstrated that the perceptual spec-ifications obtained with the design language are sufficient to synthesize vibrations, which are perceived as equally plausible as recorded vibrations in a given situational context. Overall, the demonstrated design method can be a new, more efficient tool for designers authoring vibrations for virtual environments or creating tactile feedback. The method enables further automation of the design process and thus potential time and cost reductions.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 237Eines der zentralen Ziele des Designs von Produkten oder virtuellen Um-gebungen ist die Schaffung von Erfahrungen, die im beabsichtigten An-wendungskontext die Erwartungen der Benutzer erfüllen. Gegenwärtig versucht man im vibrotaktilen Authoring-Prozess mit ineffizienten Trial-and-Error-Verfahren, die Erwartungen an den dargestellten, virtuellen Situationskontext implizit zu erfüllen. Ein effizienteres, modellgetriebenes Verfahren, das explizit auf den taktilen Benutzererwartungen basiert, wäre daher von Vorteil. Im Alltag sind wir häufig verschiedenen Ganzkörper-schwingungen ausgesetzt. Abhängig von ihren zeitlichen und spektralen Eigenschaften assoziieren wir intuitiv bestimmte Wahrnehmungsmerkmale wie z.B. “kribbeln”. Dies legt eine systematische Beziehung zwischen physikalischen Parametern und Wahrnehmungsmerkmalen nahe. Um mit potentiellen Nutzern über hervorgerufene oder erwartete taktile Eigen-schaften zu kommunizieren, wird eine standardisierte Designsprache vor-geschlagen. Sie enthält eine Menge von sensorisch-taktilen Wahrneh-mungsmerkmalen, die hinreichend den Wahrnehmungsraum der im Alltag auftretenden Vibrationen charakterisieren. Diese Entwurfssprache ermög-licht die quantitative Beurteilung taktiler Wahrnehmungsmerkmale, die in Situationskontexten wie z.B. auditiv-visuell-taktilen Fahrzeugszenen her-vorgerufen werden. Solche Wahrnehmungsspezifikationen können jedoch auch bewertet werden, indem der Inhalt dieser Szenen verbal beschrieben wird. Quasi identische Bewertungen für beide Präsentationsmodi deuten darauf hin, dass die taktilen Benutzererwartungen quantifiziert werden können, noch bevor eine Vibration präsentiert wird. Die erwarteten Wahr-nehmungsspezifikationen sind die Voraussetzung für eine anschließende Übersetzung in physikalische Schwingungsparameter. Plausible Vibratio-nen können synthetisiert werden, indem die erwarteten Wahrnehmungs-merkmale hervorgerufen werden. Auf der Grundlage der beobachteten Beziehungen zwischen Schwingungs¬parametern und sensorisch-taktilen Wahrnehmungsmerkmalen wurden ein 1-Nearest-Neighbor-Modell und ein Regressionsmodell erstellt. Die Plausibilität der von diesen Modellen synthetisierten Schwingungen im Kontext virtueller, auditorisch-visuell-taktiler Fahrzeugszenen wurde in einer Wahrnehmungsstudie validiert. Die Ergebnisse zeigten, dass die mit der Designsprache gewonnenen Wahr-nehmungsspezifikationen ausreichen, um Schwingungen zu synthetisieren, die in einem gegebenen Situationskontext als ebenso plausibel empfunden werden wie aufgezeichnete Schwingungen. Die demonstrierte Entwurfsme-thode stellt ein neues, effizienteres Werkzeug für Designer dar, die Schwingungen für virtuelle Umgebungen erstellen oder taktiles Feedback für Produkte erzeugen.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 23

    Thermally-Reconfigurable Quantum Photonic Circuits at Telecom Wavelength by Femtosecond Laser Micromachining

    Get PDF
    The importance of integrated quantum photonics in the telecom band resides on the possibility of interfacing with the optical network infrastructure developed for classical communications. In this framework, femtosecond laser written integrated photonic circuits, already assessed for quantum information experiments in the 800 nm wavelength range, have great potentials. In fact these circuits, written in glass, can be perfectly mode-matched at telecom wavelength to the in/out coupling fibers, which is a key requirement for a low-loss processing node in future quantum optical networks. In addition, for several applications quantum photonic devices will also need to be dynamically reconfigurable. Here we experimentally demonstrate the high performance of femtosecond laser written photonic circuits for quantum experiments in the telecom band and we show the use of thermal shifters, also fabricated by the same femtosecond laser, to accurately tune them. State-of-the-art manipulation of single and two-photon states is demonstrated, with fringe visibilities greater than 95%. This opens the way to the realization of reconfigurable quantum photonic circuits on this technological platform

    Representation of statistical sound properties in human auditory cortex

    Get PDF
    The work carried out in this doctoral thesis investigated the representation of statistical sound properties in human auditory cortex. It addressed four key aspects in auditory neuroscience: the representation of different analysis time windows in auditory cortex; mechanisms for the analysis and segregation of auditory objects; information-theoretic constraints on pitch sequence processing; and the analysis of local and global pitch patterns. The majority of the studies employed a parametric design in which the statistical properties of a single acoustic parameter were altered along a continuum, while keeping other sound properties fixed. The thesis is divided into four parts. Part I (Chapter 1) examines principles of anatomical and functional organisation that constrain the problems addressed. Part II (Chapter 2) introduces approaches to digital stimulus design, principles of functional magnetic resonance imaging (fMRI), and the analysis of fMRI data. Part III (Chapters 3-6) reports five experimental studies. Study 1 controlled the spectrotemporal correlation in complex acoustic spectra and showed that activity in auditory association cortex increases as a function of spectrotemporal correlation. Study 2 demonstrated a functional hierarchy of the representation of auditory object boundaries and object salience. Studies 3 and 4 investigated cortical mechanisms for encoding entropy in pitch sequences and showed that the planum temporale acts as a computational hub, requiring more computational resources for sequences with high entropy than for those with high redundancy. Study 5 provided evidence for a hierarchical organisation of local and global pitch pattern processing in neurologically normal participants. Finally, Part IV (Chapter 7) concludes with a general discussion of the results and future perspectives

    The Dynamical Response Properties of Neocortical Neurons to Temporally Modulated Noisy Inputs In Vitro

    Get PDF
    Cortical neurons are often classified by current-frequency relationship. Such a static description is inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. To test these model predictions, we estimated the linear response properties of layer 5 pyramidal cells by injecting a superposition of a small-amplitude sinusoidal wave and a background noise. We characterized the evoked firing probability across many stimulation trials and a range of oscillation frequencies (1-1000 Hz), quantifying response amplitude and phase-shift while changing noise statistics. We found that neurons track unexpectedly fast transients, as their response amplitude has no attenuation up to 200 Hz. This cut-off frequency is higher than the limits set by passive membrane properties (∼50 Hz) and average firing rate (∼20 Hz) and is not affected by the rate of change of the input. Finally, above 200 Hz, the response amplitude decays as a power-law with an exponent that is independent of voltage fluctuations induced by the background nois

    Improved DASH Architecture for Quality Cloud Video Streaming in Automated Systems

    Get PDF
    In modern times, multimedia streaming systems that transmit video across a channel primarily use HTTP services as a delivery component. Encoding the video for all quality levels is avoided thanks to fuzzy based encoders' ability to react to network changes. Additionally, the system frequently uses packet priority assignment utilising a linear error model to enhance the dynamic nature of DASH without buffering. Based on a fuzzy encoder, the decision of video quality is made in consideration of the bandwidth available. This is a component of the MPEG DASH encoder. The Fuzzy DASH system seeks to increase the scalability of online video streaming, making it suitable for live video broadcasts through mobile and other devices
    corecore