20,117 research outputs found

    Real-Time Propagation TDDFT and Density Analysis for Exciton Couplings Calculations in Large Systems

    Get PDF
    Photo-active systems are characterized by their capacity of absorbing light energy and transforming it. Usually, more than one chromophore is involved in the light absorption and excitation transport processes in complex systems. Linear-Response Time-Dependent Density Functional (LR-TDDFT) is commonly used to identify excitation energies and transition properties by solving well-known Casida's equation for single molecules. However, this methodology is not useful in practice when dealing with multichromophore systems. In this work, we extend our local density decomposition method that enables to disentangle individual contributions into the absorption spectrum to computation of exciton dynamic properties, such as exciton coupling parameters. We derive an analytical expression for the transition density from Real-Time Propagation TDDFT (P-TDDFT) based on Linear Response theorems. We demonstrate the validity of our method to determine transition dipole moments, transition densities and exciton coupling for systems of increasing complexity. We start from the isolated benzaldehyde molecule, perform a distance analysis for π\pi-stacked dimers and finally map the exciton coupling for a 14 benzaldehyde cluster.Comment: 32 pages, 8 figures; added references in introductions, typos fixe

    Triplet-Tuning: A Novel Family of Non-Empirical Exchange-Correlation Functionals

    Get PDF
    In the framework of DFT, the lowest triplet excited state, T1_1, can be evaluated using multiple formulations, the most straightforward of which are UDFT and TDDFT. Assuming the exact XC functional is applied, UDFT and TDDFT provide identical energies for T1_1 (ETE_{\rm T}), which is also a constraint that we require our XC functionals to obey. However, this condition is not satisfied by most of the popular XC functionals, leading to inaccurate predictions of low-lying, spectroscopically and photochemically important excited states, such as T1_1 and S1_1. Inspired by the optimal tuning strategy for frontier orbital energies [Stein, Kronik, and Baer, {\it J. Am. Chem. Soc.} {\bf 2009}, 131, 2818], we proposed a novel and non-empirical prescription of constructing an XC functional in which the agreement between UDFT and TDDFT in ETE_{\rm T} is strictly enforced. Referred to as "triplet tuning", our procedure allows us to formulate the XC functional on a case-by-case basis using the molecular structure as the exclusive input, without fitting to any experimental data. The first triplet tuned XC functional, TT-ω\omegaPBEh, is formulated as a long-range-corrected hybrid of PBE and HF functionals [Rohrdanz, Martins, and Herbert, {\it J. Chem. Phys.} {\bf 2009}, 130, 054112] and tested on four sets of large organic molecules. Compared to existing functionals, TT-ω\omegaPBEh manages to provide more accurate predictions for key spectroscopic and photochemical observables, including but not limited to ETE_{\rm T}, ESE_{\rm S}, ΔEST\Delta E_{\rm ST}, and II, as it adjusts the effective electron-hole interactions to arrive at the correct excitation energies. This promising triplet tuning scheme can be applied to a broad range of systems that were notorious in DFT for being extremely challenging

    Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    Get PDF
    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble of trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.Fil: Nelson, Tammie R.. Los Alamos National Laboratory; Estados UnidosFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Galindo, Johan F.. Universidad Nacional de Colombia; ColombiaFil: Kleiman, Valeria D.. University of Florida; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unido

    Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles

    Get PDF
    We investigate by first-principles simulations the resonant electron-transfer lifetime from the excited state of an organic adsorbate to a semiconductor surface, namely isonicotinic acid on rutile TiO2_2(110). The molecule-substrate interaction is described using density functional theory, while the effect of a truly semi-infinite substrate is taken into account by Green's function techniques. Excitonic effects due to the presence of core-excited atoms in the molecule are shown to be instrumental to understand the electron-transfer times measured using the so-called core-hole-clock technique. In particular, for the isonicotinic acid on TiO2_2(110), we find that the charge injection from the LUMO is quenched since this state lies within the substrate band gap. We compute the resonant charge-transfer times from LUMO+1 and LUMO+2, and systematically investigate the dependence of the elastic lifetimes of these states on the alignment among adsorbate and substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry
    • …
    corecore