85 research outputs found

    On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

    Get PDF
    Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlässige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewährleistet höchste Dienstgüten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen Dienstgüten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe Regelgüte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von Regelgüte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese Verschränkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis für die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide Domänen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt. Diese Dissertation trägt dazu bei, die Echtzeitanwendungszuverlässigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, für Echtzeitanwendungen äußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die für die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop präsentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen Zuverlässigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). Für Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die Anwendungszuverlässigkeit im Vergleich zu statischer Multi-Konnektivität um Größenordnungen erhöht, während der Ressourcenverbrauch im Bereich von konventioneller Einzelkonnektivität bleibt. Diese Zuverlässigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfügbaren Ressourcen pro Agent um ca. 10 % erhöht werden. Für das Dual-Hop Szenario wird darüberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige Anwendungszuverlässigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgeführt und als Look-Up-Table in der unteren Medienzugriffsschicht zukünftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric. This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 13

    Естимација крутости и адаптивно управљање код попустљивих робота

    Get PDF
    Although there has been an astonishing increase in the development of nature- inspired robots equipped with compliant features,i.e.soft robots, their full potential has not been exploited yet. One aspect is that the soft robotics research has mainly focused on their position control only, whilest iffness is managed in open loop. Moreover, due to the difficulties of achieving consistent production of the actuation systems for soft articulated robots and the time-varyingnatureoftheirinternalflexibleelements,whicharesubjecttoplasticdeformation overtime,itiscurrentlyachallengetopreciselydeterminethejointstiffness. . In this regard, the thesis puts an emphasis on stiffness estimation and adaptive control for soft articulated robots driven by antagonistic Variable Stiffness Actuators (VSAs) with the aim to impose the desired dynamics of both position and stiffness, which would finally contribute to the overall safety and improved performance of a soft robot. By building upon Unknown Input Observer (UIO) theory, invasive and non-invasive solutions for estimation of stiffness in pneumatic and electro-mechanical actuators are proposed and in the latter case also experimentally validated. Beyond the linearity and scalability advantage, the approaches have an appealing feature that torque and velocity sensors are not needed. Once the stiffness is determined, innovative control approaches are introduced for soft articulated robots comprising an adaptive compensator and a dynamic decoupler. The solutions are able to cope with uncertainties of the robot dynamic model and, when the desired stiffness is constant or slowly-varying, also of the pneumatic actuator. Their verification is performed via simulations and then the pneumatic one is successfully tested on an experimental setup. Finally, the thesis shows via extensive simulations the effectiveness of adaptive technique ap- plied to soft-bodied robots, previously deriving the sufficient and necessary conditions for the controller convergence.Iako se danas izuzetno intenzivno radi na razvoju robota inspirisanih prirodom koje odlikuje elastična struktura, njihov puni potencijal jox uvek nije iskorišćen. Sa jedne strane, istraživanja u oblasti popustljivih robota su uglavnom fokusirana samo na upravljanje njihovom pozicijom, dok se krutost reguliše u otvorenoj sprezi. Pored toga, zbog poteškoća u postiznju konzistentne proizvodnje aktuatora i promenljive prirode njihovih elastičnih elemenata, koji su vremenom podlo_ni plastičnoj deformaciji, trenutno je izazov precizno odrediti krutost zglobova robota. U cilju doprinosa poboljšanja_u performansi i bezbednosti rada popustivih robota, teza prikazuje doprinos proceni krutosti i adaptivnog simultanog upravljanja pozicijom i krutosti antagonističkih aktuatora promenljive krutosti (VSA). Oslanjajući se na teoriju opservera nepoznatih ulaza (UIO), predložena su invazivna i neinvazivna rešenja za procenu krutosti u pneumatskim i elektromehaničkim aktuatorima i eksperimentalno verifikovana u slučaju druge grupe aktuatora. Pored linearnosti i skalabilnosti, ovi pristupi imaju privlaqnu osobinu da senzori momenta i brzine nisu potrebni. Teza predla_e inovativne sisteme upravljanja koji poseduju adaptivni kompenzator i dinamički dekupler. Predložene metode upravljanja demonstriraju mogućnost da kompenzuju nesigurnosti dinamičkog modela robota bez obzira da li je on pogođen električnim ili pneumatskim aktuatorima. Nakon simulacija, razvijeno upravljanje je verifikovano i na pneumatskom robotu. Na kraju teze, obimne simulacije pokazuju efikasnost adaptivne tehnike kada se primeni na robote sa fleksibilnim linkovima, prethodno izvodeći dovoljne i potrebne uslove za konvergenciju kontrolera

    Intelligent Agent Architectures: Reactive Planning Testbed

    Get PDF
    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected

    Feedback Systems: An Introduction for Scientists and Engineers

    Get PDF
    This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of disciplines, illustrating the generality of many of the tools while at the same time showing how they can be applied in specific application domains. A major goal of this book is to present a concise and insightful view of the current knowledge in feedback and control systems. The field of control started by teaching everything that was known at the time and, as new knowledge was acquired, additional courses were developed to cover new techniques. A consequence of this evolution is that introductory courses have remained the same for many years, and it is often necessary to take many individual courses in order to obtain a good perspective on the field. In developing this book, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods. This book was originally developed for use in an experimental course at Caltech involving students from a wide set of backgrounds. The course was offered to undergraduates at the junior and senior levels in traditional engineering disciplines, as well as first- and second-year graduate students in engineering and science. This latter group included graduate students in biology, computer science and physics. Over the course of several years, the text has been classroom tested at Caltech and at Lund University, and the feedback from many students and colleagues has been incorporated to help improve the readability and accessibility of the material. Because of its intended audience, this book is organized in a slightly unusual fashion compared to many other books on feedback and control. In particular, we introduce a number of concepts in the text that are normally reserved for second-year courses on control and hence often not available to students who are not control systems majors. This has been done at the expense of certain traditional topics, which we felt that the astute student could learn independently and are often explored through the exercises. Examples of topics that we have included are nonlinear dynamics, Lyapunov stability analysis, the matrix exponential, reachability and observability, and fundamental limits of performance and robustness. Topics that we have deemphasized include root locus techniques, lead/lag compensation and detailed rules for generating Bode and Nyquist plots by hand. Several features of the book are designed to facilitate its dual function as a basic engineering text and as an introduction for researchers in natural, information and social sciences. The bulk of the material is intended to be used regardless of the audience and covers the core principles and tools in the analysis and design of feedback systems. Advanced sections, marked by the “dangerous bend” symbol shown here, contain material that requires a slightly more technical background, of the sort that would be expected of senior undergraduates in engineering. A few sections are marked by two dangerous bend symbols and are intended for readers with more specialized backgrounds, identified at the beginning of the section. To limit the length of the text, several standard results and extensions are given in the exercises, with appropriate hints toward their solutions. To further augment the printed material contained here, a companion web site has been developed and is available from the publisher’s web page: http://press.princeton.edu/titles/8701.html The web site contains a database of frequently asked questions, supplemental examples and exercises, and lecture material for courses based on this text. The material is organized by chapter and includes a summary of the major points in the text as well as links to external resources. The web site also contains the source code for many examples in the book, as well as utilities to implement the techniques described in the text. Most of the code was originally written using MATLAB M-files but was also tested with LabView MathScript to ensure compatibility with both packages. Many files can also be run using other scripting languages such as Octave, SciLab, SysQuake and Xmath. The first half of the book focuses almost exclusively on state space control systems. We begin in Chapter 2 with a description of modeling of physical, biological and information systems using ordinary differential equations and difference equations. Chapter 3 presents a number of examples in some detail, primarily as a reference for problems that will be used throughout the text. Following this, Chapter 4 looks at the dynamic behavior of models, including definitions of stability and more complicated nonlinear behavior. We provide advanced sections in this chapter on Lyapunov stability analysis because we find that it is useful in a broad array of applications and is frequently a topic that is not introduced until later in one’s studies. The remaining three chapters of the first half of the book focus on linear systems, beginning with a description of input/output behavior in Chapter 5. In Chapter 6, we formally introduce feedback systems by demonstrating how state space control laws can be designed. This is followed in Chapter 7 by material on output feedback and estimators. Chapters 6 and 7 introduce the key concepts of reachability and observability, which give tremendous insight into the choice of actuators and sensors, whether for engineered or natural systems. The second half of the book presents material that is often considered to be from the field of “classical control.” This includes the transfer function, introduced in Chapter 8, which is a fundamental tool for understanding feedback systems. Using transfer functions, one can begin to analyze the stability of feedback systems using frequency domain analysis, including the ability to reason about the closed loop behavior of a system from its open loop characteristics. This is the subject of Chapter 9, which revolves around the Nyquist stability criterion. In Chapters 10 and 11, we again look at the design problem, focusing first on proportional-integral-derivative (PID) controllers and then on the more general process of loop shaping. PID control is by far the most common design technique in control systems and a useful tool for any student. The chapter on frequency domain design introduces many of the ideas of modern control theory, including the sensitivity function. In Chapter 12, we combine the results from the second half of the book to analyze some of the fundamental trade-offs between robustness and performance. This is also a key chapter illustrating the power of the techniques that have been developed and serving as an introduction for more advanced studies. The book is designed for use in a 10- to 15-week course in feedback systems that provides many of the key concepts needed in a variety of disciplines. For a 10-week course, Chapters 1–2, 4–6 and 8–11 can each be covered in a week’s time, with the omission of some topics from the final chapters. A more leisurely course, spread out over 14–15 weeks, could cover the entire book, with 2 weeks on modeling (Chapters 2 and 3) — particularly for students without much background in ordinary differential equations — and 2 weeks on robust performance (Chapter 12). The mathematical prerequisites for the book are modest and in keeping with our goal of providing an introduction that serves a broad audience. We assume familiarity with the basic tools of linear algebra, including matrices, vectors and eigenvalues. These are typically covered in a sophomore-level course on the subject, and the textbooks by Apostol [10], Arnold [13] and Strang [187] can serve as good references. Similarly, we assume basic knowledge of differential equations, including the concepts of homogeneous and particular solutions for linear ordinary differential equations in one variable. Apostol [10] and Boyce and DiPrima [42] cover this material well. Finally, we also make use of complex numbers and functions and, in some of the advanced sections, more detailed concepts in complex variables that are typically covered in a junior-level engineering or physics course in mathematical methods. Apostol [9] or Stewart [186] can be used for the basic material, with Ahlfors [6], Marsden and Hoffman [146] or Saff and Snider [172] being good references for the more advanced material. We have chosen not to include appendices summarizing these various topics since there are a number of good books available. One additional choice that we felt was important was the decision not to rely on a knowledge of Laplace transforms in the book. While their use is by far the most common approach to teaching feedback systems in engineering, many students in the natural and information sciences may lack the necessary mathematical background. Since Laplace transforms are not required in any essential way, we have included them only in an advanced section intended to tie things together for students with that background. Of course, we make tremendous use of transfer functions, which we introduce through the notion of response to exponential inputs, an approach we feel is more accessible to a broad array of scientists and engineers. For classes in which students have already had Laplace transforms, it should be quite natural to build on this background in the appropriate sections of the text. Acknowledgments: The authors would like to thank the many people who helped during the preparation of this book. The idea for writing this book came in part from a report on future directions in control [155] to which Stephen Boyd, Roger Brockett, John Doyle and Gunter Stein were major contributors. Kristi Morgansen and Hideo Mabuchi helped teach early versions of the course at Caltech on which much of the text is based, and Steve Waydo served as the head TA for the course taught at Caltech in 2003–2004 and provided numerous comments and corrections. Charlotta Johnsson and Anton Cervin taught from early versions of the manuscript in Lund in 2003–2007 and gave very useful feedback. Other colleagues and students who provided feedback and advice include Leif Andersson, John Carson, K. Mani Chandy, Michel Charpentier, Domitilla Del Vecchio, Kate Galloway, Per Hagander, Toivo Henningsson Perby, Joseph Hellerstein, George Hines, Tore Hägglund, Cole Lepine, Anders Rantzer, Anders Robertsson, Dawn Tilbury and Francisco Zabala. The reviewers for Princeton University Press and Tom Robbins at NI Press also provided valuable comments that significantly improved the organization, layout and focus of the book. Our editor, Vickie Kearn, was a great source of encouragement and help throughout the publishing process. Finally, we would like to thank Caltech, Lund University and the University of California at Santa Barbara for providing many resources, stimulating colleagues and students, and pleasant working environments that greatly aided in the writing of this book

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Time-delayed vision-based DC motor control via rightmost eigenvalue assignment

    No full text

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    The working memory of argument-verb dependencies: Spatiotemporal brain dynamics during sentence processing

    No full text
    corecore