115 research outputs found

    Radar systems for a polar mission, volume 3, appendices A-D, S, T

    Get PDF
    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed

    A Depolarization Ratio Anomaly Detector to identify icebergs in sea ice using dual-polarization SAR images

    Get PDF
    Icebergs represent hazards to maritime traffic and offshore operations. Satellite Synthetic Aperture Radar (SAR) is very valuable for the observation of polar regions and extensive work was already carried out on detection and tracking of large icebergs. However, the identification of small icebergs is still challenging especially when these are embedded in sea ice. In this work, a new detector is proposed based on incoherent dual-polarization SAR images. The algorithm considers the limited extension of small icebergs, which are supposed to have a stronger cross polarization and higher cross- over co-polarization ratio compared to the surrounding sea or sea ice background. The new detector is tested with two satellite systems. Firstly, RADARSAT-2 quad-polarimetric images are analyzed to evaluate the effects of high resolution data. Subsequently a more exhaustive analysis is carried out using dual-polarization ground detected Sentinel-1a Extra Wide swath images acquired over the time span of two months. The test areas are on the East Coast of Greenland, where several icebergs have been observed. A quantitative analysis and a comparison with a detector using only the cross polarization channel is carried out exploiting grounded icebergs as test targets. The proposed methodology improves the contrast between icebergs and sea ice clutter by up to 75 times. This returns an improved probability of detection

    Examples of current radar technology and applications, chapter 5, part B

    Get PDF
    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m

    Electromagnetic backscatter modelling of icebergs at c-band in an ocean environment

    Get PDF
    This thesis outlines the development of an electromagnetic (EM) backscatter model of icebergs. It is a necessary first step for the generation of in-house synthetic aperture radar (SAR) data of icebergs to support optimum iceberg/ship classifier design. The EM modelling was developed in three stages. At first, an EM backscatter model was developed to generate simulated SAR data chips of iceberg targets at small incidence angles. The model parameters were set to mimic a dual polarized dataset collected at C-Band with the Sentinel-1A satellite. The simulated SAR data chips were compared with signatures and radiometric properties of the satellite data, including total radar cross section (TRCS). A second EM model was developed to mimic the parameters of a second SAR data collection with RADARSAT-2; this second data collection was at larger incidence angles and was fully polarimetric (four channels and interchannel phase). The full polarimetric SAR data allowed for a comparison of modelled TRCS and polarimetric decompositions. Finally, the EM backscatter models were tested in the context of iceberg/ship classification by comparing the performance of various computer vision classifiers using both simulated and real SAR image data of iceberg and vessel targets. This step is critical to check the compatibility of simulated data with the real data, and the ability to mix real and simulated SAR imagery for the generation of skilled classifiers. An EM backscatter modelling tool called GRECOSAR was used for the modelling work. GRECOSAR includes the ability to generate small scenes of the ocean using Pierson-Moskowitz spectral parameters. It also allows the placement of a 3D target shape into that ocean scene. Therefore, GRECOSAR is very useful for simulating SAR targets, however it can only model single layer scattering from the targets. This was found to be limiting in that EM scattering throughout volume of the iceberg could not be generated. This resulted in EM models that included only surface scattering of the iceberg. In order to generate realistic SAR scenes of icebergs on the ocean, 3D models of icebergs were captured in a series of field programs off the coast of Newfoundland and Labrador, Canada. The 3D models of the icebergs were obtained using a light detection and ranging (LiDAR) and multi-beam sonar data from a specially equipped vessel by a team of C-CORE. While profiling the iceberg targets, SAR images from satellites were captured for comparison with the simulated SAR images. The analysis of the real and simulated SAR imagery included comparisons of TRCS, SAR signature morphology and polarimetric decompositions of the targets. In general, these comparisons showed a good consistency between the simulated and real SAR scene. Simulations were also performed with varying target orientation and sea conditions (i.e., wind speed and direction). A wide variability of the TRCS and SAR signature morphology was observed with varying scene parameters. Icebergs were modelled using a high dielectric constant to mimic melting iceberg surfaces as seen during field work. Given that GRECOSAR could only generate surface backscatter, a mathematical model was developed to quantify the effect of melt water on the amount of surface and volume backscatter that might be expected from the icebergs. It was found that the icebergs in a high state of melt should produce predominantly surface scatter, thus validating the use of GRECOSAR for icebergs in this condition. Once the simulated SAR targets were validated against the real SAR data collections, a large dataset of simulated SAR chips of ships and icebergs were created specifically for the purpose of target classification. SAR chips were generated at varying imaging parameters and target sizes and passed on to an iceberg/ship classifier. Real and simulated SAR chips were combined in varying quantities (or targets) resulting in a series of different classifiers of varying skill. A good agreement between the classifier’s performance was found. This indicates the compatibility of the simulated SAR imagery with this application and provides an indication that the simulated data set captures all the necessary physical properties of icebergs for ship and iceberg classification

    Quad polarimetric synthetic aperture radar analysis of icebergs in Greenland and Svalbard

    Get PDF
    Polarimetric synthetic aperture radar (PolSAR) has been widely used in ocean and cryospheric applications. This is because, PolSAR can be used in all-day operations and in areas of cloud cover, and therefore can provide valuable large-scale monitoring in polar regions, which is very helpful to shipping and offshore maritime operations. In the last decades, attention has turned to the potential of PolSAR to detect icebergs in the Arctic since they are a major hazard to vessels. However, there is a substantial lack of literature exploring the potentialities of PolSAR and the understanding of iceberg scattering mechanisms. Additionally, it is not known if high resolution PolSAR can be used to detect icebergs smaller than 120 metres. This thesis aims to improve the knowledge of the use of PolSAR scattering mechanisms of icebergs, and detection of small icebergs. First, an introduction to PolSAR is outlined in chapter two, and monitoring of icebergs is presented in chapter three. The first data chapter (Chapter 4) is focused on developing a multi-scale analysis of icebergs using parameters from the Cloude-Pottier and the Yamaguchi decompositions, the polarimetric span and the Pauli scattering vector. This method is carried out using ALOS-2 PALSAR quad polarimetric L-band SAR on icebergs in Greenland. This approach outlines the good potential for using PolSAR for future iceberg classification. One of the main important outcomes is that icebergs are composed by a combination of single targets, which therefore may require a more complex way of processing SAR data to properly extract physical information. In chapter five, the problem of detecting icebergs is addressed by introducing six state-of-the-art detectors previously applied to vessel monitoring. These detectors are the Dual Intensity Polarisation Ratio Anomaly Detector (iDPolRAD), Polarimetric Notch Filter (PNF), Polarimetric Matched Filter (PMF), reflection symmetry (sym), Optimal Polarimetric Detector (OPD) and the Polarimetric Whitening Filter (PWF). Cloude-Pottier entropy, and first and third eigenvalues (eig1 and eig3) of the coherency matrix are also utilised as parameters for comparison. This approach uses the same ALOS-2 dataset, but also evaluates detection performance in two scenarios: icebergs in open ocean, and in sea ice. Polarimetric modes (quad-pol, dual-pol, and single intensities) are also considered for comparison. Currently it is very difficult to detect icebergs less than 120 metres in length using this approach, due to the scattering mechanisms of icebergs and sea ice being very similar. However, it was possible to obtain detection performances of the OPD and PWF, which both showed a Probability of Detection (PF) of 0.99 when the Probability of False Alarms (PF) was set to 10-5 in open ocean. Similarly, in dual pol images, the PWF gave the best performance with a PD of 0.90. Results in sea ice found eig3 to be the best detector with a PD of 0.90 while in dual-pol mode, iDPolRAD gave a PD of 0.978. Single intensity detector performance found the HV channel gave the best detection with a PD of 0.99 in open ocean and 0.87 in sea ice. In the previous two approaches, only satellite data is used. However, in chapter six, data from a ground-based Ku-band Gamma Portable Radio Interferometer (GPRI) instrument is introduced, providing images that are synchronised with the satellite acquisitions. In this approach, the same six detectors are applied to three multitemporal RADARSAT-2 quad pol C-band SAR images on icebergs in Kongsfjorden, Svalbard to evaluate the detection performance within a changing fjord environment. As before, we also make use of Cloude-Pottier entropy, eig1 and eig3. Finally, we evaluate the target-to-clutter ratio (TCR) of the icebergs and check for correlation between the backscattering coefficients and the iceberg dimension. The results obtained from this thesis present original additions to the literature that contributes to the understanding of PolSAR in cryospheric applications. Although these methods are applied to PolSAR and ground-based radar on vessels, they have been applied for the first time on icebergs in this thesis. To summarise, the main findings are that icebergs cannot be represented as single or partial targets, but they do exhibit a collection of single targets clustered together. This result leads to the fact that entropy is not sufficient as a parameter to detect icebergs. Detection results show that the OPD and PWF detectors perform best in an open ocean setting and using quad-pol mode. These results are degraded in dual-pol mode, while single intensity detection is best in the HV cross polarisation channel. When these detectors are applied to the RADARSAT-2 in Svalbard, the OPD and PWF detectors also perform best with PD values ranging between 0.5-0.75 for a PF of 0.01-0.05. However, the sea ice present in the fjord degrades performance across all detectors. Correlation plots with iceberg size show that a regression is not straightforward and Computer Vision methodologies may work best for this

    Quad-Polarimetric Multi-Scale Analysis of Icebergs in ALOS-2 SAR Data: A Comparison between Icebergs in West and East Greenland

    Get PDF
    Icebergs are ocean hazards which require extensive monitoring. Synthetic Aperture Radar (SAR) satellites can help with this, however, SAR backscattering is strongly influenced by the properties of icebergs, together with meteorological and environmental conditions. In this work, we used five images of quad-pol ALOS-2/PALSAR-2 SAR data to analyse 1332 icebergs in five locations in west and east Greenland. We investigate the backscatter and polarimetric behaviour, by using several observables and decompositions such as the Cloude–Pottier eigenvalue/eigenvector and Yamaguchi model-based decompositions. Our results show that those icebergs can contain a variety of scattering mechanisms at L-band. However, the most common scattering mechanism for icebergs is surface scattering, with the second most dominant volume scattering (or more generally, clouds of dipoles). In some cases, we observed a double bounce dominance, but this is not as common. Interestingly, we identified that different locations (e.g., glaciers) produce icebergs with different polarimetric characteristics. We also performed a multi-scale analysis using boxcar 5 × 5 and 11 × 11 window sizes and this revealed that depending on locations (and therefore, characteristics) icebergs can be a collection of strong scatterers that are packed in a denser or less dense way. This gives hope for using quad-pol polarimetry to provide some iceberg classifications in the future

    Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes, and Ice from Space

    Get PDF
    Gazing imaging holds promise for improved understanding of surface characteristics and processes of Earth and solar system bodies. Evolution of earthquake fault zones, migration of sand dunes, and retreat of ice masses can be understood by observing changing features over time. To gaze or stare means to look steadily, intently, and with fixed attention, offering the ability to probe the characteristics of a target deeply, allowing retrieval of 3D structure and changes on fine and coarse scales. Observing surface reflectance and 3D structure from multiple perspectives allows for a more complete view of a surface than conventional remote imaging. A gaze from low Earth orbit (LEO) could last several minutes allowing for video capture of dynamic processes. Repeat passes enable monitoring time scales of days to years. Numerous vantage points are available during a gaze (Figure 1). Features in the scene are projected into each image frame enabling the recovery of dense 3D structure. The recovery is robust to errors in the spacecraft position and attitude knowledge, because features are from different perspectives. The combination of a varying look angle and the solar illumination allows recovering texture and reflectance properties and permits the separation of atmospheric effects. Applications are numerous and diverse, including, for example, glacier and ice sheet flux, sand dune migration, geohazards from earthquakes, volcanoes, landslides, rivers and floods, animal migrations, ecosystem changes, geysers on Enceladus, or ice structure on Europa. The Keck Institute for Space Studies (KISS) hosted a workshop in June of 2014 to explore opportunities and challenges of gazing imaging. The goals of the workshop were to develop and discuss the broad scientific questions that can be addressed using spaceborne gazing, specific types of targets and applications, the resolution and spectral bands needed to achieve the science objectives, and possible instrument configurations for future missions. The workshop participants found that gazing imaging offers the ability to measure morphology, composition, and reflectance simultaneously and to measure their variability over time. Gazing imaging can be applied to better understand the consequences of climate change and natural hazards processes, through the study of continuous and episodic processes in both domains

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    • …
    corecore