160,852 research outputs found

    Time-delay estimation in multiple-input single-output systems

    Get PDF
    In this paper, the time-delay estimation problem is studied for multiple-input single-output (MISO) systems. First, a theoretical analysis is carried out by deriving the Cramer-Rao lower bound (CRLB) for time-delay estimation in a MISO system. Then, the maximum likelihood (ML) estimator for the time-delay parameter is obtained, which results in a complex optimization problem in general. In order to provide a solution of the ML estimator with low computational complexity, ML estimation based on a genetic global optimization algorithm, namely, differential evolution (DE), is proposed. Simulation studies for various fading scenarios are performed to investigate the performance of the proposed algorithm. ©2010 IEEE

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Time-delay estimation in cognitive radio and MIMO systems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 87-95.In this thesis, the time-delay estimation problem is studied for cognitive radio systems, multiple-input single-output (MISO) systems, and cognitive single-input multiple-output (SIMO) systems. A two-step approach is proposed for cognitive radio and cognitive SIMO systems in order to perform time-delay estimation with significantly lower computational complexity than the optimal maximum likelihood (ML) estimator. In the first step of this two-step approach, an ML estimator is used for each receiver branch in order to estimate the unknown parameters of the signal received via that branch. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR) combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound (CRLB) at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio and cognitive SIMO systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis. For the solution of the time-delay estimation problem in MISO systems, ML estimation based on a genetic global optimization algorithm, namely, differential evolution (DE), is proposed. This approach is proposed in order to decrease the computational complexity of the ML estimator, which results in a complex optimization problem in general. A theoretical analysis is carried out by deriving the CRLB. Simulation studies for Rayleigh and Rician fading scenarios are performed to investigate the performance of the proposed algorithm.Koçak, FatihM.S

    Performance Analysis of Wireless Systems with Doubly Selective Rayleigh Fading

    Get PDF
    Theoretical error performances of wireless communication systems suffering from both doubly selective (time varying and frequency selective) Rayleigh fading and sampler timing offset are analyzed in this paper. Single-input-single-output systems with doubly selective fading channels are equivalently represented as discrete-time single-input-multiple-output (SIMO) systems with correlated frequency-flat fading channels, with the correlation information being determined by the combined effects of sampler timing phase, maximum Doppler spread, and power delay profile of the physical fading. Based on the equivalent SIMO system representation, closed-form error-probability expressions are derived as tight lower bounds for linearly modulated systems with fractionally spaced equalizers. The information on the sampler timing offset and the statistical properties of the physical channel fading, along with the effects of the fractionally spaced equalizer, are incorporated in the error-probability expressions. Simulation results show that the new analytical results can accurately predict the error performances of maximum-likelihood sequence estimation and maximum a posteriori equalizers for practical wireless communication systems in a wide range of signal-to-noise ratio. Moreover, some interesting observations about receiver oversampling and system timing phase sensitivity are obtained based on the new analytical results

    Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

    Get PDF
    Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems with first order dynamics, sensor delay and a bounded time-varying parameter in the nonlinear part. The paper suggests a novel scheme for this estimation problem that guarantees exponential convergence to an interval that depends on the sensitivity of the system. The system is allowed to be nonlinear parameterized and time dependent, which are characteristics of the industrial problem we study. The approach requires the input nonlinearity to be a sector nonlinearity in the time-varying parameter. Salient features of the approach include simplicity of design and implementation. The efficacy of the adaptive observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel

    A polynomial QR decomposition based turbo equalization technique for frequency selective MIMO channels.

    Get PDF
    In the case of a frequency flat multiple-input multiple-output (MIMO) system, QR decomposition can be applied to reduce the MIMO channel equalization problem to a set of decision feedback based single channel equalization problems. Using a novel technique for polynomial matrix QR decomposition (PMQRD) based on Givens rotations, we extend this work to frequency selective MIMO systems. A transmitter design based on Diagonal Bell Laboratories Layered Space Time (D-BLAST) encoding has been implemented. Turbo equalization is utilized at the receiver to overcome the multipath delay spread and to facilitate multi-stream data feedback. The effect of channel estimation error on system performance has also been considered to demonstrate the robustness of the proposed PMQRD scheme. Average bit error rate simulations show a considerable improvement over a benchmark orthogonal frequency division multiplexing (OFDM) technique. The proposed scheme thereby has potential applicability in MIMO communication applications, particularly for TDMA systems with frequency selective channels

    Transmit Signal Design for MIMO Radar and Massive MIMO Channel Estimation

    Get PDF
    The widespread availability of antenna arrays and the capability to independently control signal emissions from each antenna make transmit signal design increasingly important for radar and wireless communication systems. In the rst part of this work, we develop the framework for a MIMO radar transmit scheme which trades o waveform diversity for beampattern directivity. Time-division beamforming consists of a linear precoder that provides direct control of the transmit beampattern and is able to form multiple transmit beams in a single pulse. The MIMO receive ambiguity function, which incorporates the receiver structure, reveals a space and delay-Doppler separability that emphasizes the importance of the transmit-receive beampattern and single-input single-output (SISO) ambiguity function. The second part of this work focuses on channel estimation for massive MIMO systems. As the size of arrays increase, conventional channel estimation techniques no longer remain practical. In current systems, training sequences probe wireless channels in orthogonal directions to obtain channel state information for block fading channels. The training overhead becomes signicant as the number of transmit antennas increases, thereby creating a need for alternative channel estimation techniques. In this work, we relax the orthogonal restriction on the sounding vectors and introduce a feedback channel to enable closed-loop sounding vector design. A probability of misalignment framework is introduced, which provides a measure to sequentially design sounding vectors

    Time-delay systems : stability, sliding mode control and state estimation

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Time delays and external disturbances are unavoidable in many practical control systems such as robotic manipulators, aircraft, manufacturing and process control systems and it is often a source of instability or oscillation. This thesis is concerned with the stability, sliding mode control and state estimation problems of time-delay systems. Throughout the thesis, the Lyapunov-Krasovskii (L-K) method, in conjunction with the Linear Matrix Inequality (LMI) techniques is mainly used for analysis and design. Firstly, a brief survey on recent developments of the L-K method for stability analysis, discrete-time sliding mode control design and linear functional observer design of time-delay systems, is presented. Then, the problem of exponential stability is addressed for a class of linear discrete-time systems with interval time-varying delay. Some improved delay-dependent stability conditions of linear discrete-time systems with interval time-varying delay are derived in terms of linear matrix inequalities. Secondly, the problem of reachable set bounding, essential information for the control design, is tackled for linear systems with time-varying delay and bounded disturbances. Indeed, minimisation of the reachable set bound can generally result in a controller with a larger gain to achieve better performance for the uncertain dynamical system under control. Based on the L-K method, combined with the delay decomposition approach, sufficient conditions for the existence of ellipsoid-based bounds of reachable sets of a class of linear systems with interval time-varying delay and bounded disturbances, are derived in terms of matrix inequalities. To obtain a smaller bound, a new idea is proposed to minimise the projection distances of the ellipsoids on axes, with respect to various convergence rates, instead of minimising its radius with a single exponential rate. Therefore, the smallest possible bound can be obtained from the intersection of these ellipsoids. This study also addresses the problem of robust sliding mode control for a class of linear discrete-time systems with time-varying delay and unmatched external disturbances. By using the L-K method, in combination with the delay decomposition technique and the reciprocally convex approach, new LMI-based conditions for the existence of a stable sliding surface are derived. These conditions can deal with the effects of time-varying delay and unmatched external disturbances while guaranteeing that all the state trajectories of the reduced-order system are exponentially convergent to a ball with a minimised radius. Robust discrete-time quasi-sliding mode control scheme is then proposed to drive the state trajectories of the closed-loop system towards the prescribed sliding surface in a finite time and maintain it there after subsequent time. Finally, the state estimation problem is studied for the challenging case when both the system’s output and input are subject to time delays. By using the information of the multiple delayed output and delayed input, a new minimal order observer is first proposed to estimate a linear state functional of the system. The existence conditions for such an observer are given to guarantee that the estimated state converges exponentially within an Є-bound of the original state. Based on the L-K method, sufficient conditions for Є-convergence of the observer error, are derived in terms of matrix inequalities. Design algorithms are introduced to illustrate the merit of the proposed approach. From theoretical as well as practical perspectives, the obtained results in this thesis are beneficial to a broad range of applications in robotic manipulators, airport navigation, manufacturing, process control and in networked systems
    corecore