209 research outputs found

    Comparison of routing protocols for underwater sensor networks

    Get PDF
    Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2010.Sensor networks in underwater environments face unique adverse conditions. In order to be functional, specialized routing protocols are required to route the data from source to destination. This paper surveys routing protocols for underwater sensor networks. The routing protocols are examined and compared with respect to the network conditions and quality measures such as packet delivery ratio, average packet delay, energy consumption among others. Advantages and disadvantages of each routing protocol are pointed out

    DOW-PR dolphin and whale pods routing protocol for underwater wireless sensor networks (UWSNs)

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Hydrology

    Get PDF
    In this book, an attempt is made to highlight the recent advances in Hydrology. The several topics examined in this book form the underpinnings of larger-scale considerations, including but not limited to topics such as large-scale hydrologic processes and the evolving field of Critical Zone Hydrology. Computational modeling, data collection, and visualization are additional subjects, among others, examined in the set of topics presented

    Preservation of Cultural Heritage and Resources Threatened by Climate Change

    Get PDF
    With its wide spectrum of data, case studies, monitoring, and experimental and numerical simulation techniques, the multidisciplinary approach of material, environmental, and computer science applied to the conservation of cultural heritage offers several opportunities for the heritage science and conservation community to map and monitor state-of-the-art knowledge on natural and human-induced climate change impacts on cultural heritage—mainly constituted by the built environment—in Europe and Latin America. Geosciences’ Special Issue titled “Preservation of Cultural Heritage and Resources Threatened by Climate Change” was launched to take stock of the existing but still fragmentary knowledge on this challenge, and to enable the community to respond to the implementation of the Paris agreement. These 10 papers exploit a broad range of data derived from preventive conservation monitoring conducted indoors in museums, churches, historical buildings, or outdoors in archeological sites and city centers. Case studies presented in the papers focus on a well-assorted sample of decay phenomena occurring on heritage materials (e.g., surface recession and biomass accumulation on limestone, depositions of pollutant on marble, salt weathering on inorganic building materials, and weathering processes on mortars in many local- to regional-scale study areas in the Scandinavian Peninsula, the United Kingdom, Belgium, France, Italy, Greece, and Panama). Besides monitoring, the methodological approaches showcased include, but are not limited to, original material characterization, decay product characterization, and climate and numerical modelling on material components for assessing environmental impact and climate change effects

    Time-critical underwater sensor diffusion with no proactive exchanges and negligible reactive floods

    No full text
    In this paper we study multi-hop ad hoc routing in a Underwater Sensor Network (UWSN), a novel network paradigm for ad hoc underwater investigation with a large number of low cost underwater sensors. In UWSN, sensors are mobile with water current and dispersion, and use a wireless acoustic channel for communications. However, the large propagation latency and very low bandwidth of an acoustic channel could cause widespread collisions. Moreover, the mobility of sensors requires route management and causes additional traffic, thus worsening the situation. In this paper, we propose Under-Water Diffusion (UWD), a multi-hop ad hoc routing and in-network processing protocol. Since any on-demand flood or proactive exchange is considered harmful in underwater, UWD uses no proactive routing message exchange and negligible amount of ondemand floods in the environment with homogeneous GPSfree nodes and random node mobility. We validate UWD through both the mathematical analysis and simulations.

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts
    corecore