8,160 research outputs found

    Managing stimulation of regional innovation subjects’ interaction in the digital economy

    Get PDF
    The reported study was funded by RFBR according to the research project No. 18-01000204_a, No. 16-07-00031_a, No. 18-07-00975_a.Purpose: The article is devoted to solving fundamental scientific problems in the scope of the development of forecasting modeling methods and evaluation of regional company’s innovative development parameters, synthesizing new methods of big data processing and intelligent analysis, as well as methods of knowledge eliciting and forecasting the dynamics of regional innovation developments through benchmarking. Design/Methodology/Approach: For regional economic development, it is required to identify the mechanisms that contribute to (or impede) the innovative economic development of the regions. The synergetic approach to management is based on the fact that there are multiple paths of IS development (scenarios with different probabilities), although it is necessary to reach the required attractor by meeting the management goals. Findings: The present research is focused on obtainment of new knowledge in creating a technique of multi-agent search, collection and processing of data on company’s innovative development indicators, models and methods of intelligent analysis of the collected data. Practical Implications: The author developed recommendations before starting the process of institutional changes in a specific regional innovation system. The article formulates recommendations on the implementation of institutional changes in the region taking into account the sociocultural characteristics of the region’s population. Originality/Value: It is the first time, when a complex of models and methods is based on the use of a convergent model of large data volumes processing is presented.peer-reviewe

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Mechanism design for spatio-temporal request satisfaction in mobile networks

    Full text link
    Mobile agents participating in geo-presence-capable crowdsourcing applications should be presumed rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we design a mechanism that takes into consideration this rationality for request satisfaction in such applications. We propose the Geo-temporal Request Satisfaction (GRS) problem to be that of finding the optimal assignment of requests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. The objective of the GRS problem is to maximize the total profit of the system subject to our rationality assumptions. We define the problem formally, prove that it is NP-Complete, and present a practical solution mechanism, which we prove to be convergent, and which we evaluate experimentally.National Science Foundation (1012798, 0952145, 0820138, 0720604, 0735974

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Global Risks 2015, 10th Edition.

    Get PDF
    The 2015 edition of the Global Risks report completes a decade of highlighting the most significant long-term risks worldwide, drawing on the perspectives of experts and global decision-makers. Over that time, analysis has moved from risk identification to thinking through risk interconnections and the potentially cascading effects that result. Taking this effort one step further, this year's report underscores potential causes as well as solutions to global risks. Not only do we set out a view on 28 global risks in the report's traditional categories (economic, environmental, societal, geopolitical and technological) but also we consider the drivers of those risks in the form of 13 trends. In addition, we have selected initiatives for addressing significant challenges, which we hope will inspire collaboration among business, government and civil society communitie

    RAMARL: Robustness Analysis with Multi-Agent Reinforcement Learning - Robust Reasoning in Autonomous Cyber-Physical Systems

    Get PDF
    A key driver to offering smart services is an infrastructure of Cyber-Physical systems (CPS)s. By definition, CPSs are intertwined physical and computational components that integrate physical behaviour with computation. The reason is to autonomously execute a task or a set of tasks providing a service or a list of end-users services. In real-life applications, CPSs operate in dynamically changing surroundings characterized by unexpected or unpredictable situations. Such operations involve complex interactions between multiple intelligent agents in a highly non-stationary environment. For safety reasons, a CPS should withstand a certain amount of disruption and exert the operations in a stable and robust manner when performing complex tasks. Recent advances in reinforcement learning have proven suitable for enabling multi-agents to robustly adapt to their environment, yet they often depend on a massive amount of training data and experiences. In these cases, robustness analysis outlines necessary components and specifications in a framework, ensuring reliable and stable behaviour while considering the dynamicity of the environment. This paper presents a combination of multi-agent reinforcement learning with robustness analysis shaping a cyber-physical system infrastructure that reasons robustly in a dynamically changing environment. The combination strengthens the reinforcement learning, increasing the reliability and flexibility of the system by applying robustness analysis. Robustness analysis identifies vulnerability issues when the system interacts within a dynamically changing environment. Based on this identification, when incorporated into the system, robustness analysis suggests robust solutions and actions rather than optimal ones provided by reinforcement learning alone. Results from the combination show that this infrastructure can enable reliable operations with the flexibility to adapt to the changing environment dynamics.publishedVersio

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference
    • …
    corecore