12,253 research outputs found

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks

    Full text link
    Spectrum sensing, which aims at detecting spectrum holes, is the precondition for the implementation of cognitive radio (CR). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage. Due to hardware limitations, each cognitive radio node can only sense a relatively narrow band of radio spectrum. Consequently, the available channel sensing information is far from being sufficient for precisely recognizing the wide range of unoccupied channels. Aiming at breaking this bottleneck, we propose to apply matrix completion and joint sparsity recovery to reduce sensing and transmitting requirements and improve sensing results. Specifically, equipped with a frequency selective filter, each cognitive radio node senses linear combinations of multiple channel information and reports them to the fusion center, where occupied channels are then decoded from the reports by using novel matrix completion and joint sparsity recovery algorithms. As a result, the number of reports sent from the CRs to the fusion center is significantly reduced. We propose two decoding approaches, one based on matrix completion and the other based on joint sparsity recovery, both of which allow exact recovery from incomplete reports. The numerical results validate the effectiveness and robustness of our approaches. In particular, in small-scale networks, the matrix completion approach achieves exact channel detection with a number of samples no more than 50% of the number of channels in the network, while joint sparsity recovery achieves similar performance in large-scale networks.Comment: 12 pages, 11 figure
    • …
    corecore