84,644 research outputs found

    Minimizing current effects on autonomous surface craft operations in Singapore harbor

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-102).The nation of Singapore is seeking new ways to adapt to its rapid growth. With the help of researchers and staff at the Singapore-MIT Alliance for Research and Technology (SMART), numerous data collection and analysis efforts are underway. One such effort involves the harbor where operations and oceanographic data collection missions are being completed using various sensors and autonomous systems. Utilizing Autonomous Surface Crafts (ASCs) to collect data is one such method and provides a level of robustness unachievable by humans. To improve these operations we seek to address the issue of efficiency in an environment containing surface waves, strong winds, and multiple current shears. In this thesis we present two new heading control algorithms for ASCs under the influence of currents. The first, Cross-Track Error Minimization, ensures that the vehicle follows a straight-line trajectory between two waypoints under the effects of surface waves and currents. The second controller, Time-Optimal, uses Zermelo's problem and function minimization to find the time-optimal trajectory between two waypoints using a known current field. We further define near-time-optimal paths covering a set of waypoints by defining an asymmetric Traveling Salesman Problem (TSP) where the graph nodes are the waypoints and the edges are the corresponding travel times between the waypoints. Tour construction and local search heuristics are then utilized to build near time-optimal paths. These new paths show a potential time savings of 89% leading to overall mission efficiency.by Lynn M. Sarcione.S.M

    Fracturing ranked surfaces

    Get PDF
    Discretized landscapes can be mapped onto ranked surfaces, where every element (site or bond) has a unique rank associated with its corresponding relative height. By sequentially allocating these elements according to their ranks and systematically preventing the occupation of bridges, namely elements that, if occupied, would provide global connectivity, we disclose that bridges hide a new tricritical point at an occupation fraction p=pcp=p_{c}, where pcp_{c} is the percolation threshold of random percolation. For any value of pp in the interval pc<p≤1p_{c}< p \leq 1, our results show that the set of bridges has a fractal dimension dBB≈1.22d_{BB} \approx 1.22 in two dimensions. In the limit p→1p \rightarrow 1, a self-similar fracture is revealed as a singly connected line that divides the system in two domains. We then unveil how several seemingly unrelated physical models tumble into the same universality class and also present results for higher dimensions

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set F⊆E(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and ∣E(T)∣|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in ∣C∣|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    A Certified-Complete Bimanual Manipulation Planner

    Full text link
    Planning motions for two robot arms to move an object collaboratively is a difficult problem, mainly because of the closed-chain constraint, which arises whenever two robot hands simultaneously grasp a single rigid object. In this paper, we propose a manipulation planning algorithm to bring an object from an initial stable placement (position and orientation of the object on the support surface) towards a goal stable placement. The key specificity of our algorithm is that it is certified-complete: for a given object and a given environment, we provide a certificate that the algorithm will find a solution to any bimanual manipulation query in that environment whenever one exists. Moreover, the certificate is constructive: at run-time, it can be used to quickly find a solution to a given query. The algorithm is tested in software and hardware on a number of large pieces of furniture.Comment: 12 pages, 7 figures, 1 tabl

    IMDB network revisited: unveiling fractal and modular properties from a typical small-world network

    Get PDF
    We study a subset of the movie collaboration network, imdb.com, where only adult movies are included. We show that there are many benefits in using such a network, which can serve as a prototype for studying social interactions. We find that the strength of links, i.e., how many times two actors have collaborated with each other, is an important factor that can significantly influence the network topology. We see that when we link all actors in the same movie with each other, the network becomes small-world, lacking a proper modular structure. On the other hand, by imposing a threshold on the minimum number of links two actors should have to be in our studied subset, the network topology becomes naturally fractal. This occurs due to a large number of meaningless links, namely, links connecting actors that did not actually interact. We focus our analysis on the fractal and modular properties of this resulting network, and show that the renormalization group analysis can characterize the self-similar structure of these networks.Comment: 12 pages, 9 figures, accepted for publication in PLOS ON
    • …
    corecore