1,272 research outputs found

    A recursively feasible and convergent Sequential Convex Programming procedure to solve non-convex problems with linear equality constraints

    Get PDF
    A computationally efficient method to solve non-convex programming problems with linear equality constraints is presented. The proposed method is based on a recursively feasible and descending sequential convex programming procedure proven to converge to a locally optimal solution. Assuming that the first convex problem in the sequence is feasible, these properties are obtained by convexifying the non-convex cost and inequality constraints with inner-convex approximations. Additionally, a computationally efficient method is introduced to obtain inner-convex approximations based on Taylor series expansions. These Taylor-based inner-convex approximations provide the overall algorithm with a quadratic rate of convergence. The proposed method is capable of solving problems of practical interest in real-time. This is illustrated with a numerical simulation of an aerial vehicle trajectory optimization problem on commercial-of-the-shelf embedded computers

    Model Predictive Control for Autonomous Driving Based on Time Scaled Collision Cone

    Full text link
    In this paper, we present a Model Predictive Control (MPC) framework based on path velocity decomposition paradigm for autonomous driving. The optimization underlying the MPC has a two layer structure wherein first, an appropriate path is computed for the vehicle followed by the computation of optimal forward velocity along it. The very nature of the proposed path velocity decomposition allows for seamless compatibility between the two layers of the optimization. A key feature of the proposed work is that it offloads most of the responsibility of collision avoidance to velocity optimization layer for which computationally efficient formulations can be derived. In particular, we extend our previously developed concept of time scaled collision cone (TSCC) constraints and formulate the forward velocity optimization layer as a convex quadratic programming problem. We perform validation on autonomous driving scenarios wherein proposed MPC repeatedly solves both the optimization layers in receding horizon manner to compute lane change, overtaking and merging maneuvers among multiple dynamic obstacles.Comment: 6 page
    • …
    corecore