2,641 research outputs found

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Implementing the EffTox dose-finding design in the Matchpoint trial

    Get PDF
    Background: The Matchpoint trial aims to identify the optimal dose of ponatinib to give with conventional chemotherapy consisting of fludarabine, cytarabine and idarubicin to chronic myeloid leukaemia patients in blastic transformation phase. The dose should be both tolerable and efficacious. This paper describes our experience implementing EffTox in the Matchpoint trial. Methods: EffTox is a Bayesian adaptive dose-finding trial design that jointly scrutinises binary efficacy and toxicity outcomes. We describe a nomenclature for succinctly describing outcomes in phase I/II dose-finding trials. We use dose-transition pathways, where doses are calculated for each feasible set of outcomes in future cohorts. We introduce the phenomenon of dose ambivalence, where EffTox can recommend different doses after observing the same outcomes. We also describe our experiences with outcome ambiguity, where the categorical evaluation of some primary outcomes is temporarily delayed. Results: We arrived at an EffTox parameterisation that is simulated to perform well over a range of scenarios. In scenarios where dose ambivalence manifested, we were guided by the dose-transition pathways. This technique facilitates planning, and also helped us overcome short-term outcome ambiguity. Conclusions: EffTox is an efficient and powerful design, but not without its challenges. Joint phase I/II clinical trial designs will likely become increasingly important in coming years as we further investigate non-cytotoxic treatments and streamline the drug approval process. We hope this account of the problems we faced and the solutions we used will help others implement this dose-finding clinical trial design. Trial registration: Matchpoint was added to the European Clinical Trials Database (2012-005629-65) on 2013-12-30

    Cities and energy:urban morphology and residential heat-energy demand

    Get PDF
    Our aim is better understanding of the theoretical heat-energy demand of different types of urban form at a scale of 500 m × 500 m. The empirical basis of this study includes samples of dominant residential building typologies identified for Paris, London, Berlin, and Istanbul. In addition, archetypal idealised samples were created for each type through an analysis of their built form parameters and the removal of unwanted ‘invasive’ morphologies. The digital elevation models of these real and idealised samples were run through a simulation that modelled solar gains and building surface energy losses to estimate heat-energy demand. In addition to investigating the effect of macroscale morphological parameters, microscale design parameters, such as U-values and glazing ratios, as well as climatic effects were analysed. The theoretical results of this study suggest that urban-morphology-induced heat-energy efficiency is significant and can lead to a difference in heat-energy demand of up to a factor of six. Compact and tall building types were found to have the greatest heat-energy efficiency at the neighbourhood scale while detached housing was found to have the lowest

    EFFICIENT COUNTING WITH OPTIMAL RESILIENCE

    Get PDF
    Consider a complete communication network of n nodes, where the nodes receive a common clock pulse. We study the synchronous c-counting problem: given any starting state and up to f faulty nodes with arbitrary behavior, the task is to eventually have all correct nodes labeling the pulses with increasing values modulo c in agreement. Thus, we are considering algorithms that are self-stabilizing despite Byzantine failures. In this work, we give new algorithms for the synchronous counting problem that (1) are deterministic, (2) have optimal resilience, (3) have a linear stabilization time in f (asymptotically optimal), (4) use a small number of states, and, consequently, (5) communicate a small number of bits per round. Prior algorithms either resort to randomization, use a large number of states and need high communication bandwidth, or have suboptimal resilience. In particular, we achieve an exponential improvement in both state complexity and message size for deterministic algorithms. Moreover, we present two complementary approaches for reducing the number of bits communicated during and after stabilization.Peer reviewe

    Duckietown: An Innovative Way to Teach Autonomy

    Get PDF
    Teaching robotics is challenging because it is a multidisciplinary, rapidly evolving and experimental discipline that integrates cutting-edge hardware and software. This paper describes the course design and first implementation of Duckietown, a vehicle autonomy class that experiments with teaching innovations in addition to leveraging modern educational theory for improving student learning. We provide a robot to every student, thanks to a minimalist platform design, to maximize active learning; and introduce a role-play aspect to increase team spirit, by modeling the entire class as a fictional start-up (Duckietown Engineering Co.). The course formulation leverages backward design by formalizing intended learning outcomes (ILOs) enabling students to appreciate the challenges of: (a) heterogeneous disciplines converging in the design of a minimal self-driving car, (b) integrating subsystems to create complex system behaviors, and (c) allocating constrained computational resources. Students learn how to assemble, program, test and operate a self-driving car (Duckiebot) in a model urban environment (Duckietown), as well as how to implement and document new features in the system. Traditional course assessment tools are complemented by a full scale demonstration to the general public. The “duckie” theme was chosen to give a gender-neutral, friendly identity to the robots so as to improve student involvement and outreach possibilities. All of the teaching materials and code is released online in the hope that other institutions will adopt the platform and continue to evolve and improve it, so to keep pace with the fast evolution of the field.National Science Foundation (U.S.) (Award IIS #1318392)National Science Foundation (U.S.) (Award #1405259

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Reflexive law, corporate social responsibility and the evolution of labour standards: the case of working time

    Get PDF
    Through an empirical study of working time in the United Kingdom, we explore the scope for initiatives based on corporate social responsibility (CSR) to engender voluntary action by employers to raise labour standards. Our evidence suggests that a CSR-based approach faces considerable problems of implementation in this area, in large part because the legal mechanisms which might underpin CSR ('reflexive law') have not yet been effectively developed.corporate social responsibility, labour standards
    • 

    corecore