10,673 research outputs found

    Fate of Kaluza-Klein Bubble

    Full text link
    We numerically study classical time evolutions of Kaluza-Klein bubble space-time which has negative energy after a decay of vacuum. As the zero energy Witten's bubble space-time, where the bubble expands infinitely, the subsequent evolutions of Brill and Horowitz's momentarily static initial data show that the bubble will expand in terms of the area. At first glance, this result may support Corley and Jacobson's conjecture that the bubble will expand forever as well as the Witten's bubble. The irregular signatures, however, can be seen in the behavior of the lapse function in the maximal slicing gauge and the divergence of the Kretchman invariant. Since there is no appearance of the apparent horizon, we suspect an appearance of a naked singularity as the final fate of this space-time.Comment: 13 pages including 10 figures, RevTeX, epsf.sty. CGPG-99/12-8, RESCEU-6/00 and DAMTP-2000-30. To appear in Phys. Rev.

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure

    Simulating binary neutron stars: dynamics and gravitational waves

    Full text link
    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \had computational infrastructure for distributed adaptive mesh refinement.Comment: 14 pages, 16 figures. Added one figure from previous version; corrected typo

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    Collapse and black hole formation in magnetized, differentially rotating neutron stars

    Get PDF
    The capacity to model magnetohydrodynamical (MHD) flows in dynamical, strongly curved spacetimes significantly extends the reach of numerical relativity in addressing many problems at the forefront of theoretical astrophysics. We have developed and tested an evolution code for the coupled Einstein-Maxwell-MHD equations which combines a BSSN solver with a high resolution shock capturing scheme. As one application, we evolve magnetized, differentially rotating neutron stars under the influence of a small seed magnetic field. Of particular significance is the behavior found for hypermassive neutron stars (HMNSs), which have rest masses greater the mass limit allowed by uniform rotation for a given equation of state. The remnant of a binary neutron star merger is likely to be a HMNS. We find that magnetic braking and the magnetorotational instability lead to the collapse of HMNSs and the formation of rotating black holes surrounded by massive, hot accretion tori and collimated magnetic field lines. Such tori radiate strongly in neutrinos, and the resulting neutrino-antineutrino annihilation (possibly in concert with energy extraction by MHD effects) could provide enough energy to power short-hard gamma-ray bursts. To explore the range of outcomes, we also evolve differentially rotating neutron stars with lower masses and angular momenta than the HMNS models. Instead of collapsing, the non-hypermassive models form nearly uniformly rotating central objects which, in cases with significant angular momentum, are surrounded by massive tori.Comment: Submitted to a special issue of Classical and Quantum Gravity based around the New Frontiers in Numerical Relativity meeting at the Albert Einstein Institute, Potsdam, July 17-21, 200

    Using multiphase fluid flow modeling and time-lapse electromagnetics to improve 4D monitoring of CO 2 in an EOR reservoir

    Get PDF
    Understanding the changes in the saturation within a reservoir undergoing enhanced oil recovery (EOR) is crucial to optimizing production. We debut a novel, multiphase fluid flow modelling code, TOGA, to assist in modeling gas, oil, and water phases within the reservoir, and combine its output with time-lapse Depth to Surface Resistivity data in a case study involving an EOR reservoir. The results show the potential for combining the two methods to improve our understanding of reservoir saturation over an extended period of time
    • …
    corecore