1,061 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Deep speech inpainting of time-frequency masks

    Full text link
    Transient loud intrusions, often occurring in noisy environments, can completely overpower speech signal and lead to an inevitable loss of information. While existing algorithms for noise suppression can yield impressive results, their efficacy remains limited for very low signal-to-noise ratios or when parts of the signal are missing. To address these limitations, here we propose an end-to-end framework for speech inpainting, the context-based retrieval of missing or severely distorted parts of time-frequency representation of speech. The framework is based on a convolutional U-Net trained via deep feature losses, obtained using speechVGG, a deep speech feature extractor pre-trained on an auxiliary word classification task. Our evaluation results demonstrate that the proposed framework can recover large portions of missing or distorted time-frequency representation of speech, up to 400 ms and 3.2 kHz in bandwidth. In particular, our approach provided a substantial increase in STOI & PESQ objective metrics of the initially corrupted speech samples. Notably, using deep feature losses to train the framework led to the best results, as compared to conventional approaches.Comment: Accepted to InterSpeech202

    SkipConvGAN: Monaural Speech Dereverberation using Generative Adversarial Networks via Complex Time-Frequency Masking

    Full text link
    With the advancements in deep learning approaches, the performance of speech enhancing systems in the presence of background noise have shown significant improvements. However, improving the system's robustness against reverberation is still a work in progress, as reverberation tends to cause loss of formant structure due to smearing effects in time and frequency. A wide range of deep learning-based systems either enhance the magnitude response and reuse the distorted phase or enhance complex spectrogram using a complex time-frequency mask. Though these approaches have demonstrated satisfactory performance, they do not directly address the lost formant structure caused by reverberation. We believe that retrieving the formant structure can help improve the efficiency of existing systems. In this study, we propose SkipConvGAN - an extension of our prior work SkipConvNet. The proposed system's generator network tries to estimate an efficient complex time-frequency mask, while the discriminator network aids in driving the generator to restore the lost formant structure. We evaluate the performance of our proposed system on simulated and real recordings of reverberant speech from the single-channel task of the REVERB challenge corpus. The proposed system shows a consistent improvement across multiple room configurations over other deep learning-based generative adversarial frameworks.Comment: Published in: IEEE/ACM Transactions on Audio, Speech, and Language Processing ( Volume: 30
    corecore