219 research outputs found

    OmniVec: Learning robust representations with cross modal sharing

    Full text link
    Majority of research in learning based methods has been towards designing and training networks for specific tasks. However, many of the learning based tasks, across modalities, share commonalities and could be potentially tackled in a joint framework. We present an approach in such direction, to learn multiple tasks, in multiple modalities, with a unified architecture. The proposed network is composed of task specific encoders, a common trunk in the middle, followed by task specific prediction heads. We first pre-train it by self-supervised masked training, followed by sequential training for the different tasks. We train the network on all major modalities, e.g.\ visual, audio, text and 3D, and report results on 2222 diverse and challenging public benchmarks. We demonstrate empirically that, using a joint network to train across modalities leads to meaningful information sharing and this allows us to achieve state-of-the-art results on most of the benchmarks. We also show generalization of the trained network on cross-modal tasks as well as unseen datasets and tasks.Comment: Accepted to WACV 202

    Contribution to Graph-based Manifold Learning with Application to Image Categorization.

    Get PDF
    122 pLos algoritmos de aprendizaje de variedades basados en grafos (Graph,based manifold) son técnicas que han demostrado ser potentes herramientas para la extracción de características y la reducción de la dimensionalidad en los campos de reconomiento de patrones, visión por computador y aprendizaje automático. Estos algoritmos utilizan información basada en las similitudes de pares de muestras y del grafo ponderado resultante para revelar la estructura geométrica intrínseca de la variedad

    Contribution to Graph-based Manifold Learning with Application to Image Categorization.

    Get PDF
    122 pLos algoritmos de aprendizaje de variedades basados en grafos (Graph,based manifold) son técnicas que han demostrado ser potentes herramientas para la extracción de características y la reducción de la dimensionalidad en los campos de reconomiento de patrones, visión por computador y aprendizaje automático. Estos algoritmos utilizan información basada en las similitudes de pares de muestras y del grafo ponderado resultante para revelar la estructura geométrica intrínseca de la variedad

    Image-set, Temporal and Spatiotemporal Representations of Videos for Recognizing, Localizing and Quantifying Actions

    Get PDF
    This dissertation addresses the problem of learning video representations, which is defined here as transforming the video so that its essential structure is made more visible or accessible for action recognition and quantification. In the literature, a video can be represented by a set of images, by modeling motion or temporal dynamics, and by a 3D graph with pixels as nodes. This dissertation contributes in proposing a set of models to localize, track, segment, recognize and assess actions such as (1) image-set models via aggregating subset features given by regularizing normalized CNNs, (2) image-set models via inter-frame principal recovery and sparsely coding residual actions, (3) temporally local models with spatially global motion estimated by robust feature matching and local motion estimated by action detection with motion model added, (4) spatiotemporal models 3D graph and 3D CNN to model time as a space dimension, (5) supervised hashing by jointly learning embedding and quantization, respectively. State-of-the-art performances are achieved for tasks such as quantifying facial pain and human diving. Primary conclusions of this dissertation are categorized as follows: (i) Image set can capture facial actions that are about collective representation; (ii) Sparse and low-rank representations can have the expression, identity and pose cues untangled and can be learned via an image-set model and also a linear model; (iii) Norm is related with recognizability; similarity metrics and loss functions matter; (v) Combining the MIL based boosting tracker with the Particle Filter motion model induces a good trade-off between the appearance similarity and motion consistence; (iv) Segmenting object locally makes it amenable to assign shape priors; it is feasible to learn knowledge such as shape priors online from Web data with weak supervision; (v) It works locally in both space and time to represent videos as 3D graphs; 3D CNNs work effectively when inputted with temporally meaningful clips; (vi) the rich labeled images or videos help to learn better hash functions after learning binary embedded codes than the random projections. In addition, models proposed for videos can be adapted to other sequential images such as volumetric medical images which are not included in this dissertation

    Multidimensional projections for the visual exploration of multimedia data

    Get PDF
    Multidimensional data analysis is considerably important when dealing with such large and complex datasets. Among the possibilities when analyzing such kind of data, applying visualization techniques can help the user find and understand patters, trends and establish new goals. This thesis aims to present several visualization methods to interactively explore multidimensional datasets aimed from specialized to casual users, by making use of both static and dynamic representations created by multidimensional projections
    corecore