14,595 research outputs found

    P-REx: The Piston Reconstruction Experiment for Infrared Interferometry

    Full text link
    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the datasets from good observing conditions (r0_0 \sim 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μ\mum down to 1-2 μ\mum over timescales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the VLTI or the LBTI. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8m-class telescopes.Comment: 15 pages, 13 figures, 5 tables. Accepted for publication by Monthly Notices of the Royal Astronomical Societ

    Predicting real-time roadside CO and NO2 concentrations using neural networks

    Get PDF
    The main aim of this paper is to develop a model based on neural network (NN) theory to estimate real-time roadside CO and hboxNO2hbox{NO}_{2} concentrations using traffic and meteorological condition data. The location of the study site is at a road intersection in Melton Mowbray, which is a town in Leicestershire, U.K. Several NNs, which can be classified into three types, namely, the multilayer perceptron, the radial basis function, and the modular network, were developed to model the nonlinear relationships that exist in the pollutant concentrations. Their performances are analyzed and compared. The transferability of the developed models is studied using data collected from a road intersection in another city. It was concluded that all NNs provide reliable estimates of pollutant concentrations using limited information and noisy data

    Predicting real-time roadside CO and NO2 concentrations using neural networks

    Get PDF
    The main aim of this paper is to develop a model based on neural network (NN) theory to estimate real-time roadside CO and hboxNO2hbox{NO}_{2} concentrations using traffic and meteorological condition data. The location of the study site is at a road intersection in Melton Mowbray, which is a town in Leicestershire, U.K. Several NNs, which can be classified into three types, namely, the multilayer perceptron, the radial basis function, and the modular network, were developed to model the nonlinear relationships that exist in the pollutant concentrations. Their performances are analyzed and compared. The transferability of the developed models is studied using data collected from a road intersection in another city. It was concluded that all NNs provide reliable estimates of pollutant concentrations using limited information and noisy data

    Performance of adaptive bayesian equalizers in outdoor environments

    Get PDF
    Outdoor communications are affected by multipath propagation that imposes an upper limit on the system data rate and restricts possible applications. In order to overcome the degrading effect introduced by the channel, conventional equalizers implemented with digital filters have been traditionally used. A new approach based on neural networks is considered. In particular, the behavior of the adaptive Bayesian equalizer implemented by means of radial basis functions applied to the channel equalization of radio outdoor environments has been analyzed. The method used to train the equalizer coefficients is based on a channel response estimation. We compare the results obtained with three channel estimation methods: the least sum of square errors (LSSE) channel estimation algorithm, recursive least square (RLS) algorithm employed only to obtain one channel estimation and, finally, the RLS algorithm used to estimate the channel every decided symbol for the whole frame.Peer ReviewedPostprint (published version

    Applications of recurrent neural networks in batch reactors. Part I: NARMA modelling of the dynamic behaviour of the heat transfer fluid

    Get PDF
    This paper is focused on the development of nonlinear models, using artificial neural networks, able to provide appropriate predictions when acting as process simulators. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. Different structures of NARMA (Non-linear ARMA) models have been studied. The experimental results have allowed to carry out a comparison between the different neural approaches and a first-principles model. The best neural results are obtained using a parallel model structure based on a recurrent neural network architecture, which guarantees better dynamic approximations than currently employed neural models. The results suggest that parallel models built up with recurrent networks can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits which change from batch installation to installation.Publicad

    Forecasting high waters at Venice Lagoon using chaotic time series analisys and nonlinear neural netwoks

    Get PDF
    Time series analysis using nonlinear dynamics systems theory and multilayer neural networks models have been applied to the time sequence of water level data recorded every hour at 'Punta della Salute' from Venice Lagoon during the years 1980-1994. The first method is based on the reconstruction of the state space attractor using time delay embedding vectors and on the characterisation of invariant properties which define its dynamics. The results suggest the existence of a low dimensional chaotic attractor with a Lyapunov dimension, DL, of around 6.6 and a predictability between 8 and 13 hours ahead. Furthermore, once the attractor has been reconstructed it is possible to make predictions by mapping local-neighbourhood to local-neighbourhood in the reconstructed phase space. To compare the prediction results with another nonlinear method, two nonlinear autoregressive models (NAR) based on multilayer feedforward neural networks have been developed. From the study, it can be observed that nonlinear forecasting produces adequate results for the 'normal' dynamic behaviour of the water level of Venice Lagoon, outperforming linear algorithms, however, both methods fail to forecast the 'high water' phenomenon more than 2-3 hours ahead.Publicad

    Real-valued feature selection for process approximation and prediction

    Get PDF
    The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the Rènyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    corecore