882 research outputs found

    Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Get PDF
    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    Dynamic Modeling, Design and Control of Wire-Borne Underactuated Brachiating Robots: Theory and Application

    Get PDF
    The ability of mobile robots to locomote safely in unstructured environments will be a cornerstone of robotics of the future. Introducing robots into fully unstructured environments is known to be a notoriously difficult problem in the robotics field. As a result, many of today's mobile robots are confined to prepared level surfaces in laboratory settings or relatively controlled environments only. One avenue for deploying mobile robots into unstructured settings is to utilize elevated wire networks. The research conducted under this thesis lays the groundwork for developing a new class of wire-borne underactuated robots that employs brachiation -- swinging like an ape -- as a means of locomotion on flexible cables. Executing safe brachiation maneuvers with a cable-suspended underactuated robot is a challenging problem due to the complications induced by the cable dynamics and vibrations. This thesis studies, from concept through experiments, the dynamic modeling techniques and control algorithms for wire-borne underactuated brachiating robots, to develop advanced locomotion strategies that enable the robots to perform energy-efficient and robust brachiation motions on flexible cables. High-fidelity and approximate dynamic models are derived for the robot-cable system, which provide the ability to model the interactions between the cable and the robot and to include the flexible cable dynamics in the control design. An optimal trajectory generation framework is presented in which the flexible cable dynamics are explicitly accounted for when designing the optimal swing trajectories. By employing a variety of control-theoretic methods such as robust and adaptive estimation, control Lyapunov and barrier functions, semidefinite programming and sum-of-squares optimization, a set of closed-loop control algorithms are proposed. A novel hardware brachiating robot design and embodiment are presented, which incorporate unique mechanical design features and provide a reliable testbed for experimental validation of the wire-borne underactuated brachiating robots. Extensive simulation results and hardware experiments demonstrate that the proposed multi-body dynamic models, trajectory optimization frameworks, and feedback control algorithms prove highly useful in real world settings and achieve reliable brachiation performance in the presence of uncertainties, disturbances, actuator limits and safety constraints.Ph.D

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    • โ€ฆ
    corecore