543 research outputs found

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Resource Allocation for Near-Field Communications: Fundamentals, Tools, and Outlooks

    Full text link
    Extremely large-scale multiple-input-multiple output (XL-MIMO) is a promising technology to achieve high spectral efficiency (SE) and energy efficiency (EE) in future wireless systems. The larger array aperture of XL-MIMO makes communication scenarios closer to the near-field region. Therefore, near-field resource allocation is essential in realizing the above key performance indicators (KPIs). Moreover, the overall performance of XL-MIMO systems heavily depends on the channel characteristics of the selected users, eliminating interference between users through beamforming, power control, etc. The above resource allocation issue constitutes a complex joint multi-objective optimization problem since many variables and parameters must be optimized, including the spatial degree of freedom, rate, power allocation, and transmission technique. In this article, we review the basic properties of near-field communications and focus on the corresponding "resource allocation" problems. First, we identify available resources in near-field communication systems and highlight their distinctions from far-field communications. Then, we summarize optimization tools, such as numerical techniques and machine learning methods, for addressing near-field resource allocation, emphasizing their strengths and limitations. Finally, several important research directions of near-field communications are pointed out for further investigation
    • …
    corecore