2,973 research outputs found

    Potential for microgeneration : study and analysis

    Get PDF
    The Energy Saving Trust, in conjunction with Element Energy Limited, E-Connect and Cambridge University Faculty of Economics, has been commissioned by the DTI to study the UK potential for microgeneration technologies. The technologies included in this study are:–solar photovoltaics (PV);–wind turbines;–small hydro;–active solar water heating *;•Microgeneration is defined as any technology, connected to the distribution network (if electric) and with a capacity below 50-100kW. Most domestic installations will be below 3kWe, though thermal systems could be larger.•Microgeneration could deliver significant efficiency and CO2benefits, through increased use of renewables, utilisation of “waste”heat from electricity generation or renewable heating fuels, and avoidance of losses in the electricity transmission and distribution system.•For microgeneration to have an impact on the UK electricity system, units must be installed by consumers in their millions. This will require a new highly decentralised approach to energy planning and policy. In addition a new understanding of the likely interaction between microgeneration technology and its multitude of potential end users (the general public) must be developed

    Modelling the impact of micro generation on the electrical distribution system

    Get PDF
    In the UK and elsewhere there is considerable debate as to the future form of the electricity distribution system. The coming years will see a rise in the amount of micro-generation connected to the network at low voltages and the emergence of highly-distributed power systems (HDPS). However, there is considerable uncertainty as to the impact that this micro-generation will have on the quality of power supplied to our homes or to the stability of the electricity system as a whole. To address these engineering challenges the UK Engineering and Physical Sciences Research Council (EPSRC) is funding a three year research programme featuring a multi-disciplinary team from a variety of UK Universities: Supergen HDPS. This paper documents one piece of work emerging from the consortium, where a multi-tool approach is used to analyse the impact of micro-generation on the electricity system. This used a building simulation tool to produce electrical generation profiles for domestic cogeneration device models. These, along with profiles produced for other micro-generation technology models and electrical load profiles are then replicated and aggregated using a customised statistical approach. The profiles were then used as boundary conditions for a set of electrical load flow simulations on a model of a section of real network, where the number of microgenerators was varied according to different scenarios for the future of the UK electricity grid. The results indicate that a significant number of micro-generation devices can be accommodated before any power quality problems arise, however this is dependent upon maintaining a robust central grid

    Requirements to Testing of Power System Services Provided by DER Units

    Get PDF
    The present report forms the Project Deliverable ‘D 2.2’ of the DERlab NoE project, supported by the EC under Contract No. SES6-CT-518299 NoE DERlab. The present document discuss the power system services that may be provided from DER units and the related methods to test the services actually provided, both at component level and at system level

    Active integration of electric vehicles in the distribution network - theory, modelling and practice

    Get PDF

    Distributed Power Generation in Europe: Technical Issues for Further Integration

    Get PDF
    The electric power sector in Europe is currently facing different changes and evolutions mainly in response to the three issues at EU level - environmental sustainability, security of supply, and competitiveness. These issues, against a background of growing electricity demand, may represent drivers for facilitating the further deployment of Distributed Power Generation technologies in Europe. The present Report focuses on the potential role of Distributed Power Generation (or simply Distributed Generation, DG) in a European perspective. More specifically, this work aims to assess the technical issues and developments related to DG technologies and their integration into the European power systems. As a starting point the concept of Distributed Generation is characterised for the purpose of the study. Distributed Generation, defined as an electric power source connected to the distribution network, serving a customer on-site or providing network support, may offer various benefits to the European electric power systems. DG technologies may consist of small/medium size, modular energy conversion units, which are generally located close to end users and transform primary energy resources into electricity and eventually heat. There are, however, major issues concerning the integration of DG technology into the distribution networks. In fact, the existing distribution networks were not generally designed to operate in presence of DG technologies. Consequently, a sustained increase in the deployment of DG resources may imply several changes in the electric power system architecture in the near future. The present Report on Distributed Generation in Europe, after an overview of the basic elements of electric power systems, introduces the proposed definition and main features of DG. Then, it reviews the state-of-the-art of DG technologies as well as focuses on current DG grid integration issues. Technical solutions towards DG integration in Europe and developments concerning the future distribution systems are also addressed in the study.JRC.F.7-Energy systems evaluatio

    Community-based micro grids: a common property resource problem

    Get PDF
    This paper introduces a new methodological and theoretical foundation for studying the reasons for successes and failures of community-based micro grids (CBMGs). While technical and financial factors involved are very critical they are comparatively well researched. This analysis argues that further research into, in particular, the institutional design of CBMGs is required in order to improve long-term sustainability. The paper suggests that the electricity in an isolated micro grid can be treated as a common property resource (CPR), which then opens up the established academic literature regarding collective action in the presence of CPRs. More specifically this paper analyses how the rich set of enabling conditions for collective action, which has been established in the context of traditional CPR situations such as water for irrigation or pasture for grazing, can be applied to the context of CBMGs. The goal is to arrive at workable recommendations for policy-makers and practitioners to inform the design and improve the long-term sustainability of CBMGs. Ultimately this has the potential to contribute towards efforts to bring modern energy services to significant parts of rural populations without electricity access

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain
    • …
    corecore