6 research outputs found

    The impacts of climate change and agricultural activities on water cycling of Northern Eurasia

    Get PDF
    The ecosystems in Northern Eurasia (NE) are important due to their vast land coverage, high rate of observed and projected warming, and the potential feedbacks they can cause on the global climate system. To understand the impacts of climate change and agricultural activities on water cycling in NE, I analysed a variety of datasets and conducted series of studies by applying a combination of modeling, in-situ observations and remote sensing data, uncertainty analysis, and model-data fusion.^ Long-term unique in-situ measurements on soil moisture across multiple stations and discharge records at the outflow basins in Northern China (NC) provide us robust evidence to assess the trends of soil moisture and discharge in this region (Chapter 2). NC overlaps with NE and is one of the hot-spots experiencing the most severe water shortage in the world. Declines in soil moisture and stream flow detected via in-situ measurements in the last three decades indicate that water scarcity has been exacerbated. Multiple linear regression results indicate that intensification of agricultural activities including increase in fertilizer use, prevalence of water-expensive crops and cropland expansion appear to have aggravated these declines in this region.^ Scarce evapotranspiration (ET) measurements make ET estimation via model a necessary step for better regional-scale water management. Penman–Monteith based algorithms for plant transpiration and soil evaporation were introduced into the Terrestrial Ecosystem Model (TEM) to calculate ET (Chapter 3). I then examined the response of ET and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. It is shown that use of the Penman–Monteith based algorithms in the TEM substantially improved ET estimation on the Mongolia Plateau. Results show that regional annual ET varies from 188 to 286 mm yr−1 – with an increasing trend – across different climate change scenarios during the 21st century. Meanwhile, the differences between precipitation and ET suggest that the available water for human use will not change significantly during the 21st century. In addition, analyses also suggest that climate change is more important than land cover change in determining changes in regional ET.^ Improvement in the accuracy of ET estimation by introducing Penman–Monteith based algorithms into the TEM motivated me to further improve the model representation of ET processes. I further modified the TEM to incorporate more detailed ET processes including canopy interception loss, ET (evaporation) from wetland surfaces, wetlands and water bodies, and snow sublimation to examine spatiotemporal variation of ET in NE from 1948 to 2009 (Chapter 4). Those modifications lead to substantial enhancement in the accuracy of estimation of ET and runoff. The consideration of snow sublimation substantially improved the ET estimates and highlighted the importance of snow in the hydrometeorology of NE. The root mean square error of discharge from the six largest watersheds in NE decreased from 527.74 km 3 yr-1 to 126.23 km3 yr-1. Meanwhile, a systematic underestimation of river discharge after 1970 indicates that other water sources or dynamics not considered in the model (e.g., melting glaciers, permafrost thawing and fires) or bias in the precipitation forcing may also be important for the hydrology of the region.^ To better understand the possible causes of systematic bias in discharge estimates, I examined the impacts of forcing data uncertainty on ET and runoff estimation in NE by driving the modified TEM with five widely-used forcing data sets (Chapter 5). Estimates of regional ET vary between 263.5-369.3 mm yr-1 during 1979-2008 depending on the choice of forcing data, while the spatial variability of ET appears more consistent. Uncertainties in ETforcing propagate as well to estimates of runoff. Independent of the forcing dataset, the climatic variables that dominate ET temporal variability remain the same among all the five TEM simulated ET products. ET is dominated by air temperature in the north and by precipitation in the south during the growing season, and solar radiation and vapour pressure deficit explain the dynamics of ET for the rest of the year. While the Climate Research Unit (CRU) TS3.1 dataset of the University of East Anglia appears as a better choice of forcing via our assessment, the quality of forcing data remains a major challenge to accurately quantify the regional water balance in NE

    Paleoproterozoic tectonic evolution of the Trans-North China Orogen: toward a comprehensive model.

    Get PDF
    International audienceIn this contribution we present a reconstruction of the overall lithotectonic architecture, from inner zones to external ones, of the Paleoproterozoic Trans North China Orogen, within the North China Craton. Moreover, forward thermobarometrical modeling on a kyanite-bearing gneiss yields a reliable prograde P-T-t-D path. In addition, 40Ar/39Ar dating on rocks from distinct litho-tectonic units helps us to distinguish several tectono-metamorphic events during the orogenic development. Considering these results, we propose a geodynamic model involving three cratonic blocks, namely the Western, Fuping and Eastern Blocks, separated by two oceans, the Lüliang and Taihang Oceans. The opening of oceanic basins occurred around 2.2-2.3 Ga. After the westward subductions of oceanic lithosphere, the Trans-North-China Orogen was built up through a polyphase tectonic evolution within the period 1900-1800 Ma. The first event (D1) corresponded to the emplacement of lower and upper nappes herein called the Orthogneiss-and-Volcanites Unit (OVU) and the Low-Grade-and-Mafic Unit (LGMU), respectively. The syn-metamorphic D1 deformation (1880 ± 10 Ma) is characterized by a NW-SE stretching and mineral lineation with a top-to-the SE sense of shear. During ongoing compression of the thickening orogenic crust, a second deformation event D2 (1850 ± 10 Ma) was responsible for (1) syn-anatectic lateral flow and exhumation of the orogenic root and (2) folding of the middle and upper parts of the orogenic wedge that consequently acquired a fan-type geometry. The late D3 (1830 ± 10 Ma) and D4 (1810 ± 10 Ma) events are related to late-orogenic normal and strike-slip shearing, respectively. In our present state of knowledge, the Paleoproterozoic Trans-North China Orogen might be regarded as the assemblage of two continent-continent collisional belts, both of which are characterized by nappe stacking accommodated by top-to-the E/SE ductile shearing. Continental subduction, crustal thickening, partial melting of overthickened crust, exhumation of HP rocks and deposition of syn-orogenic detrital basins are typical features of modern collisional-type orogens

    Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration

    Get PDF
    This work was funded by National Basic Research Program of China (2014CB953800), Young Talents Projects of the Institute of Urban Environment, Chinese Academy of Sciences (IUEMS201402), National Natural Science Foundation of China (41471190, 41301237, 71704171), China Postdoctoral Science Foundation (2014T70144) and Discovery Early Career Researcher Award of the Australian Research Council (DE170100423). The work contributes to the UK-China Virtual Joint Centres on Nitrogen “N-Circle” and “CINAg” funded by the Newton Fund via UK BBSRC/NERC (grants BB/N013484/1 and BB/N013468/1, respectively).Peer reviewedPostprintPostprin

    Prehistoric Mongolian Archaeology in the Early 21st Century : Developments in the Steppe and Beyond

    Get PDF
    Peer reviewedPublisher PD

    Forest Soil Respiration under Climate Changing

    Get PDF
    The respiration of forest soils and the major factors controlling its rate are fairly well understood. The process is of utmost significance because its balance with the fixation of CO2 in the biomass defines whether a particular site is a source or sink of atmospheric CO2. Currently, the measurement of soil respiration in the field requires rather expensive experimental installations. Nevertheless, there are still some caveats in our understanding, such as the separation of autotrophic and heterotrophic soil respiration, the relevance of different groups of soil organisms, the effect of ecosystem disturbances in different types of forests on soil respiration with respect to magnitude and duration, the adaptation of soil respiration to changing site conditions, and the regional prediction of soil respiration, based on proxy data. Technical progress and additional contributions on process understanding will put us in the position of better predictions of the forest soil respiration. We encourage studies from all fields, including experimental studies, monitoring approaches and models, to contribute to this Special Issue in order to promote knowledge and adaptation strategies for the preservation, management, and future development of forest ecosystems

    松花江流域の汚染源分布及び典型的な汚染物除去に関する研究

    Get PDF
    Songhua River Basin located in Northeast China, owning a total area of 55.68 square kilometers. The Songhua River Basin is the third largest basin in China, after the Yangtze River and the Yellow River. The water quality of Songhua River seriously affects the ecological environment of the basin. It is urgent to scientifically plan pollution sources, improve water quality and ensure residents’ water safety according to the economic development of Songhua River Basin. Based on studying typical pollutant removal methods in Songhua River Basin, this paper studies the pollution source planning in Songhua River Basin. Finally, some suggestions are put forward to solve the pollution sources in Songhua River Basin. Two efficient removal methods of main pollutants are found in this paper, which are not limited to the Songhua River Basin, but also applicable to the pollution control of other waters.北九州市立大
    corecore