59 research outputs found

    Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

    Get PDF
    The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an efficient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Soil Moisture Estimation for landslide monitoring: A new approach using multi-temporal Synthetic Aperture RADAR data

    Get PDF
    This study explores the utility of the Spotlight2 X-band Synthetic Aperture Radar product developed by the Italian Space Agency for use in multi-temporal estimation of soil moisture in a landslide monitoring context, using a time series of monthly images of the Hollin Hill Landslide Observatory – North Yorkshire, UK. The study shows the complexity of surface soil moisture at an active landslide, using high resolution in situ soil moisture data. This in situ data is also used for ground truthing the soil moisture estimations from the SAR data. The study shows the limitations of inter-and intra-sensor calibration within the Cosmo-SkyMed array and contextualises this problem within the current research climate where SAR imagery is increasingly being created using multi-satellite constellation, while being used, increasingly, by environmental scientists rather than remote sensing specialists

    TerraSAR-X Time Series Fill a Gap in Spaceborne Snowmelt Monitoring of Small Arctic Catchments—A Case Study on Qikiqtaruk(Herschel Island), Canada

    Get PDF
    The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture

    Get PDF
    A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore