160 research outputs found

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Spread-spectrum techniques for environmentally-friendly underwater acoustic communications

    Get PDF
    PhD ThesisAnthropogenic underwater noise has been shown to have a negative impact on marine life. Acoustic data transmissions have also been shown to cause behavioural responses in marine mammals. A promising approach to address these issues is through reducing the power of acoustic data transmissions. Firstly, limiting the maximum acoustic transmit power to a safe limit that causes no injury, and secondly, reducing the radius of the discomfort zone whilst maximising the receivable range. The discomfort zone is dependent on the signal design as well as the signal power. To achieve these aims requires a signal and receiver design capable of synchronisation and data reception at low-received-SNR, down to around −15 dB, with Doppler effects. These requirements lead to very high-ratio spread-spectrum signaling with efficient modulation to maximise data rate, which necessitates effective Doppler correction in the receiver structure. This thesis examines the state-of-the-art in this area and investigates the design, development and implementation of a suitable signal and receiver structure, with experimental validation in a variety of real-world channels. Data signals are designed around m-ary orthogonal signaling based on bandlimited carrierless PN sequences to create an M-ary Orthogonal Code Keying (M-OCK) modulation scheme. Synchronisation signal structures combining the energy of multiple unique PN symbols are shown to outperform single PN sequences of the same bandwidth and duration in channels with low SNR and significant Doppler effects. Signals and receiver structures are shown to be capable of reliable communications with band of 8 kHz to 16 kHz and transmit power limited to less than 170.8 dB re 1 μPa @ 1m, or 1W of acoustic power, over ranges of 10 km in sea trials, with low-received-SNR below −10 dB, at data rates of up to 140.69 bit/s. Channel recordings with AWGN demonstrated limits of signal and receiver performance of BER 10−3 at −14 dB for 35.63 bit/s, and −8.5 dB for 106.92 bit/s. Piloted study of multipath exploitation showed this performance could be improved to −10.5 dB for 106.92 bit/s by combining the energy of two arrival paths. Doppler compensation techniques are explored with experimental validation showing synchronisation and data demodulation at velocities over ranges of ±2.7m/s. Non-binary low density parity check (LDPC) error correction coding with M-OCK signals is investigated showing improved performance over Reed-Solomon (RS) coding of equivalent code rate in simulations and experiments in real underwater channels. The receiver structures are implemented on an Android mobile device with experiments showing live real-time synchronisation and data demodulation of signals transmitted through an underwater channel.UK Engineering and Physical Sciences Research Council (EPSRC): PhD Doctoral Training Account (DTA)

    Underwater acoustic communication under doppler effects

    Get PDF
    In this thesis we perform a research survey of the three available technologies for wireless underwater communications. We discuss the main features and drawbacks inherent to acoustic, RF, and optical communications. We focus our research on underwater acoustic communications, and we analyze and evaluate the channel frequency response of Arraial do Cabo using data acquired in situ. We further investigate the Doppler effect, a phenomenon that is inherent to underwater acoustic channels. We analyze and justify a compensation algorithm to mitigate the Doppler effects. We propose a simplified algorithm version for minimizing the required number of pilot symbols. We also develop a simple strategy to determine how often our proposed compensation method should be retrained. Our main contribution is the proposal of a new receiver design to deal with Doppler effects. We present the idea of iteratively adapt the correlator filter placed at the receiver side. We show that the adaptation of this filter’s support reduces the inter-symbol interference of the estimated symbols. Besides this idea, we demonstrate that the time-dependent phase-shift component of the received signal should be removed beforehand. That is, we propose a modification in the signal processing sequence blocks for improving the symbol estimation. For testing and comparing this new receiver design, we implement a communication model encompassing physical layer aspects. We perform several numerical simulations for single-carrier and multicarrier systems. Simulation results show that our proposal might provide a reduction in the bit error rate for high signal-to-noise ratios. This performance improvement can be observed for all tested relative movement, and even with dense digital signal constellation.Nesta tese foi realizada uma pesquisa extensa sobre as tecnologias existentes para comunicação sem fio subaquática. Foram analisadas as principais características das comunicações acústicas, RF e ótica. O estudo foi aprofundado na comunicação acústica, e foi realizada uma análise da resposta em frequência do canal de Arraial do Cabo com dados adquiridos no local. O efeito Doppler, um fenômeno inerente aos canais subaquáticos acústicos, foi investigado de forma minuciosa. Dentre as técnicas estudas para compensação deste efeito, foi escolhido um algoritmo adaptativo, o qual foi re-analisado com uma nova abordagem. Uma versão simplificada deste algoritmo foi proposta para reduzir a quantidade de símbolos pilotos. Foi também desenvolvida uma estratégia para determinar a frequência de treinamento deste novo algoritmo. A principal contribuição da tese é a proposta de uma nova estrutura de receptor para compensar o efeito Doppler. Nesta estrutura, é proposta a adaptação de forma iterativa do filtro correlator. A adaptação do suporte temporal deste filtro reduz a interferência inter-simbólica. Além desta ideia, foi demonstrado que a componente de fase do sinal recebido, que é dependente do tempo, deve ser removida em um estágio anterior ao usual. Ou seja, foi proposta uma modificação na sequência do processamento do sinal recebido para melhorar a sua estimativa. Para testar esta nova estrutura do receptor, foi implementado um sistema de comunicação. Foram realizadas simulações numéricas com sistemas de uma única e de múltiplas portadoras. Os resultados das simulações mostram que a nova estrutura pode reduzir a quantidade de erros de bits para altos valores de razão sinal-ruído. A melhora do desempenho pode ser observada em todas as velocidades relativas testadas, e também para constelações densas

    Development of a dynamic underwater acoustic communication channel simulator with configurable sea surface parameters to explore time-varying signal distortion

    Get PDF
    A wide-band phase-coherent multi-path underwater acoustic channel simulation is developed using an approximate quantitative model of the acoustic wave response to a time-varying three-dimensional rough surface. It has been demonstrated over transmission ranges from 100 m to 8 km by experimental channel probing and comparable synthetic replication of the channel probing through the simulated channel, that the simulation is capable of reproducing fine-time-scale Doppler and delay distortions consistent with those generated in real shallow channels

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull
    • …
    corecore