523 research outputs found

    A delay differential equation model on harmful algal blooms in the presence of toxic substances

    Get PDF
    The periodic nature of blooms is the main characteristic in marine plankton ecology. Release of toxic substances by phytoplankton species or toxic phytoplankton reduce the growth of zooplankton by decreasing grazing pressure and have an important role in planktonic blooms. A simple mathematical model of phytoplankton-zooplankton systems with such characteristics is proposed and analysed. As the process of liberation of toxic substances by phytoplankton species is still not clear, we try to describe a suitable mechanism to explain the cyclic nature of bloom dynamics by using different forms of toxin liberation process. To substantiate our analytical findings numerical simulations are performed and these adequately resemble the results obtained in our field study

    Covariation patterns of Phytoplankton and Bacterioplankton in hypertrophic shallow lakes

    Get PDF
    The aim of this work was to assess the temporal patterns in the community composition of phytoplankton (PCC) and bacterioplankton (BCC) in two interconnected and hypertrophic Pampean shallow lakes in Argentina. Factors shaping their community dynamics and community temporal covariations were also analysed. We performed 4 years of seasonal samplings (2012-2016) and communities were studied by the Utermöhl approach (PCC) and Illumina MiSeq sequencing (BCC). We found marked seasonal variations in both communities and inter-annual variations with decreasing microbial community similarities during the study. We also observed covariation in community-level dynamics among PCC and BCC within and between shallow lakes. The within-lake covariations remained positive and significant, while controlling for the effects of intrinsic (environmental) and extrinsic (temporal and meteorological) factors, suggesting a community coupling mediated by intrinsic biotic interactions. Algal-bacterial associations between different taxa of phytoplankton and bacterioplankton within each lake were also found. PCC was mainly explained by pure regional extrinsic (17-21%) and intrinsic environmental (8-9%) factors, while BCC was explained by environmental (8-10%) and biotic interactions with phytoplankton (7-8%). Our results reveal that the influence of extrinsic regional factors can be channeled to bacterioplankton through both environmental (i.e. water temperature) and phytoplankton effects.Fil: Schiaffino, María Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Huber, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Sagua, Mara Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Sabio y García, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Reissig, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Investigating summer thermal stratification in Lake Ontario

    Get PDF
    Summer thermal stratification in Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). Summer temperature differences establish strong vertical density gradients (thermocline) between the epilimnion and hypolimnion. Capturing the stratification and thermocline formation has been a challenge in modeling Great Lakes. Deviating from EFDC's original Mellor-Yamada (1982) vertical mixing scheme, we have implemented an unidimensional vertical model that uses different eddy diffusivity formulations above and below the thermocline (Vincon-Leite, 1991; Vincon-Leite et al., 2014). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers; and lake bathymetry is interpolated on a 2-km grid. The model has 20 vertical layers following sigma vertical coordinates. Sensitivity of the model to vertical layers' spacing is thoroughly investigated. The model has been calibrated for appropriate solar radiation coefficients and horizontal mixing coefficients. Overall the new implemented diffusivity algorithm shows some successes in capturing the thermal stratification with RMSE values between 2-3°C. Calibration of vertical mixing coefficients is under investigation to capture the improved thermal stratification

    The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

    Get PDF
    This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows

    A systematic review of the treatment of phosphorus in biogeochemical and ecological models

    Get PDF
    Aquatic biogeochemical and ecological models have become increasingly detailed, both in resolution and in the number of processes and components represented. It is timely to pause and take stock of these models. Do these models accurately reflect our current understanding of the biogeochemistry of aquatic systems? Is their predictive performance improving? Are they improving in the range of system properties and behaviours that can be predicted? Where there is variety in approaches or algorithms, can we demonstrate that one method is better than another and should be preferred? This review begins this process, focusing on how phosphorus cycles are represented in models of aquatic systems. A systematic review of 71 distinct published biogeochemical and ecological models of aquatic systems in 167 applications finds: Lake models and marine models are very similar, while river and catchment models differ. This appears largely to be due to different traditions within modelling communities rather than real differences in biogeochemical processes. River models tend to have simpler representations of phosphorus than lake or marine models. The performance of river models is usually quantitatively assessed using standard metrics (77% of publications include some performance metrics), while this is usually not the case for lake models (35% include some quantitative metric) or marine models (only 29%). Across all three domains, models are becoming more complex over time (Figure 1), but there is no clear evidence that this is improving the predictive performance of models. The appropriate degree of model complexity depends on a number of factors, including the resources and data available to support the model and the purpose for which the model is being developed. Simpler models can be more rigorously calibrated and evaluated and may have just as much predictive capacity, while physiologically-based models, which are usually more complex, may be more generalisable and better able to anticipate unexpected responses and emergent properties of the system. A range of phosphorus papers not included in current models is discussed, including the biogeochemistry of organic phosphorus, the biogeochemical implications of flow through sediments, and sediment drying and re-wetting. In some aquatic environments, these processes are likely to be important. It is concluded that a broader community toolkit of model algorithms is required

    Hydrology and biota interactions as driving forces for ecosystem functioning

    Get PDF
    This chapter examines the interactions between biologic and hydrologic processes in estuarine and nearshore coastal ecosystems, and their relevance to ecosystem functioning. The role of specific hydrologic variables and processes upon key functional groups of organisms (phytoplankton, heterotrophic bacteria, holozooplankton, merozooplankton, benthos, and nekton) is addressed considering both bottom-up and top-down effects. The impact of biologic processes on relevant hydrologic features, including dissolved gases, inorganic nutrients, organic matter, chemical and biological contaminants, turbidity, and water flow, is then evaluated. Biologic-and hydrologic-driven changes are integrated, specifying how they reverberate into ecosystem functioning over different spatial and temporal scales

    Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the Netherlands

    Get PDF
    In the Netherlands, legacies and diffuse nutrient pollution continue to fuel recurrent cyanobacterial blooms in mostly shallow and relatively small surface waters. A survey in peer-reviewed literature and Dutch grey-literature was performed to gain insight into the physical-, chemical- and biological in-lake interventions used to bring these waters towards their desired state. A critical overview is presented on efficacy of different measures to counteract cyanobacterial blooms directly via targeting the cyanobacteria or indirectly via reduction of nutrient availability. Many actions have no or limited effects on minimising cyanobacterial blooms (air-bubble- or oil screens, surface mixers, low-energy ultrasound, effective micro-organisms, fish introduction), while others are more effective, but may vary in longevity and costs (dams, excavation or dredging, hydrogen peroxide, phosphorus inactivation agents), meet legislation restrictions (copper-based algaecides, herbicides, dreissenids), or are not currently implemented (hypolimnetic withdrawal). The selection of promising interventions requires a proper diagnosis of each problem lake, based on water- and nutrient fluxes, the biology of the lake (plants, fish), the function of the lake and the characteristics of the method, such as efficacy, costs, safety and ease of implementation. In the Netherlands, ongoing diffuse loads and legacies necessitate repetitive in-lake interventions.</p

    Large scale spatio-temporal forcing of pelagic-coastal coupling: disentangling the effects of environmental change on intertidal invertebrate recruitment

    Get PDF
    Marine systems are driven by the relationships among organisms and environmental conditions. Anthropogenic-induced changes during the past decades have started to alter climatic drivers which have the potential to alter the physical, chemical and biological environment. In coastal systems, biogeography is influenced by the temporal variability in the conditions of the water mass. In addition, many marine benthic organisms develop in the water mass and rely on the conditions that link the pelagic and benthic systems for population maintenance. Such pelagic-coastal coupling indicates that changes in the trophic system during development can be transferred to the adult populations through changes in propagule supply. Thus, changes in environmental conditions can influence benthic populations directly (e.g. through larval advection) or indirectly, through their influence on the phytoplankton community (e.g. through the development of HABs). The South African coastline shows clear alongshore patterns of faunal biomass and species richness. On the south coast, strong longitudinal patterns of recruitment of intertidal organisms exist, with areas of particularly high recruitment. HABs of unprecedented spatio-temporal magnitude have recently developed along the south coast, including the areas where benthic recruitment is most intense. The present thesis used these blooms to study changes in intertidal recruitment directly or indirectly associated with their occurrence. Using a combination of remote sensing data to study the environmental conditions of the water mass in the innermost part of the Agulhas Bank, and estimates of mussel and barnacle recruitment rates to integrate the effects of conditions in the water mass during larval development, this thesis aimed to: (1) understand the conditions that triggered the development of an HAB of the dinoflagellate Lingulodinium polyedrum during summer of 2014, (2) determine the direct or indirect effects of that bloom on recruitment of intertidal organisms, and understand the factors that affect recruitment along the coast, (3) determine if the environmental factors during bloom development produced any carryover effects on recruit growth and mortality, and (4) determine the factors that drive changes in community biomass and composition along the south coast, the long-term trends in those factors, and possible changes experienced in recent years. Water column stability during spring, before the development of the red tide, followed by alternating periods of upwelling and relaxation during summer and autumn, seemed to promote the development and persistence of L. polyedrum. Recruitment of mussels and barnacles was estimated during the reproductive season of mussels in 2014, coinciding with the red tide, and during the following year. Alongshore patterns in recruitment were found, with higher mussel recruitment in the absence of the red tide and the opposite pattern in barnacles. Alongshore patterns in SST and chlorophyll matching those of recruitment were also found, with higher SSTs and lower chlorophyll during the red tide than the following year. Growth and mortality rates in barnacles did not differ between years during the first five months after settlement. This suggests that the factors which produced differences in recruitment between years did not produce carryover effects detectable at the temporal scales studied. Further analysis of 15 years of satellite-derived environmental data showed significant cooling trends potentially driven by a long-term seasonal acceleration of the Agulhas Current in autumn around two upwelling centres on the south coast, coinciding temporally with the reproductive period of mussels and barnacles, and spatially with the areas of highest recruitment. In addition, the comparison of SST and chl-a conditions during the first and the second half of the period of study showed that seasonality of both variables has changed in large areas over the shelf, with increasing importance of shorter-term variability, which would in turn decrease environmental predictability. Thus, the conditions observed during the present study, particularly during 2015, when upwelling seemed to be more intense, may presage the potential effects of identified long-term cooling trends at the upwelling centres. Although the general trend shows cooling around those areas, conditions can vary greatly among years, favouring different taxa. Changes in the Agulhas Current System are affected by changes in distant areas in the Indian Ocean basin. Such tele-connection is unlikely to be unique to this system and indicates the importance of understanding trends in major large scale climatic drivers and their regional effects in order to make predictions about coastal systems
    corecore