36,874 research outputs found

    On Termination for Faulty Channel Machines

    Get PDF
    A channel machine consists of a finite controller together with several fifo channels; the controller can read messages from the head of a channel and write messages to the tail of a channel. In this paper, we focus on channel machines with insertion errors, i.e., machines in whose channels messages can spontaneously appear. Such devices have been previously introduced in the study of Metric Temporal Logic. We consider the termination problem: are all the computations of a given insertion channel machine finite? We show that this problem has non-elementary, yet primitive recursive complexity

    A design model for Open Distributed Processing systems

    Get PDF
    This paper proposes design concepts that allow the conception, understanding and development of complex technical structures for open distributed systems. The proposed concepts are related to, and partially motivated by, the present work on Open Distributed Processing (ODP). As opposed to the current ODP approach, the concepts are aimed at supporting a design trajectory with several, related abstraction levels. Simple examples are used to illustrate the proposed concepts

    Visualisation and analysis of complex behaviours using structured occurrence nets

    Get PDF
    PhD ThesisA complex evolving system consists of a large number of sub-systems which may proceed concurrently and interact with each other or with the external environment, while its behaviour is subject to modification by other systems. Structured occurrence nets (sons) are a Petri net based formalism for modelling the behaviour of complex evolving systems. The concept extends that of occurrence nets, a formalism that can be used to record causality and concurrency information concerning a single execution of a system. In sons, multiple occurrence nets are combined using various types of relationships in order to represent dependencies between communicating and evolving sub-systems. The work presented in this thesis aims to develop a tool and extend existing methodology for structured representations of the behaviours of complex evolving system. The theoretical development focuses on the extension of existing son concepts. It addresses the issue of efficient son model checking and simulation, representations of alternative behaviour and time information, structuring son-based unfolding, and algorithms for constructing the unfolding. The implementation aims to develop tools for son-based model visualisation, simulation and analysis. An open source tool called SONCraft has been developed to support these functionalities. SONCraft provides a user-friendly graphical interface that facilitates model entry, supports interactive visual simulation, and allows the use of a set of analytical tools for model checking.supported in part by EPSRC EP/K001698/1 UNderstanding COmplex system eVolution through structurEd behaviouRs (UNCOVER) project

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    On the Semantics of Petri Nets

    No full text
    Petri Place/Transition (PT) nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the "token game"' is too intensional, even in its more abstract interpretations in term of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category {PTNets} of PT nets, we introduce a category {DecOcc} of decorated (nondeterministic) occurrence nets and we define adjunctions between {PTNets} and {DecOcc} and between {DecOcc} and {Occ}, the category of occurrence nets. The role of {DecOcc} is to provide natural unfoldings for PT nets, i.e. acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from {PTNets} to {Occ} reduces to Winskel's when restricted to safe nets, while the standard coreflection between {Occ} and {Dom}, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between {PTNets} and {Dom}
    • …
    corecore