899 research outputs found

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Representing and Reasoning about Temporal Granularities

    Full text link

    A qualitative approach to the identification, visualisation and interpretation of repetitive motion patterns in groups of moving point objects

    Get PDF
    Discovering repetitive patterns is important in a wide range of research areas, such as bioinformatics and human movement analysis. This study puts forward a new methodology to identify, visualise and interpret repetitive motion patterns in groups of Moving Point Objects (MPOs). The methodology consists of three steps. First, motion patterns are qualitatively described using the Qualitative Trajectory Calculus (QTC). Second, a similarity analysis is conducted to compare motion patterns and identify repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a continuous triangular model. As an illustration of the usefulness of combining these hitherto separated methods, a specific movement case is examined: Samba dance, a rhythmical dance will? many repetitive movements. The results show that the presented methodology is able to successfully identify, visualize and interpret the contained repetitive motions

    Dependence relationships between Gene Ontology terms based on TIGR gene product annotations

    Get PDF
    The Gene Ontology is an important tool for the representation and processing of information about gene products and functions. It provides controlled vocabularies for the designations of cellular components, molecular functions, and biological processes used in the annotation of genes and gene products. These constitute three separate ontologies, of cellular components), molecular functions and biological processes, respectively. The question we address here is: how are the terms in these three separate ontologies related to each other? We use statistical methods and formal ontological principles as a first step towards finding answers to this question

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented

    Enhancing Exploratory Analysis across Multiple Levels of Detail of Spatiotemporal Events

    Get PDF
    Crimes, forest fires, accidents, infectious diseases, human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its spatial location, time and related attributes are known with high levels of detail (LoDs). The LoD of analysis plays a crucial role in the userā€™s perception of phenomena. From one LoD to another, some patterns can be easily perceived or different patterns may be detected, thus requiring modeling phenomena at different LoDs as there is no exclusive LoD to study them. Granular computing emerged as a paradigm of knowledge representation and processing, where granules are basic ingredients of information. These can be arranged in a hierarchical alike structure, allowing the same phenomenon to be perceived at different LoDs. This PhD Thesis introduces a formal Theory of Granularities (ToG) in order to have granules defined over any domain and reason over them. This approach is more general than the related literature because these appear as particular cases of the proposed ToG. Based on this theory we propose a granular computing approach to model spatiotemporal phenomena at multiple LoDs, and called it a granularities-based model. This approach stands out from the related literature because it models a phenomenon through statements rather than just using granules to model abstract real-world entities. Furthermore, it formalizes the concept of LoD and follows an automated approach to generalize a phenomenon from one LoD to a coarser one. Present-day practices work on a single LoD driven by the users despite the fact that the identification of the suitable LoDs is a key issue for them. This PhD Thesis presents a framework for SUmmarizIng spatioTemporal Events (SUITE) across multiple LoDs. The SUITE framework makes no assumptions about the phenomenon and the analytical task. A Visual Analytics approach implementing the SUITE framework is presented, which allow users to inspect a phenomenon across multiple LoDs, simultaneously, thus helping to understand in what LoDs the phenomenon perception is different or in what LoDs patterns emerge

    A survey of temporal knowledge discovery paradigms and methods

    Get PDF
    With the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and implemented systems are using an enhanced temporal understanding to explain aspects of behavior associated with the implicit time-varying nature of the universe. This paper investigates the confluence of these two areas, surveys the work to date, and explores the issues involved and the outstanding problems in temporal data mining
    • ā€¦
    corecore