42 research outputs found

    Robust continuous-time smoothers without two-sided stochastic integrals

    Get PDF
    Copyright Ā© 2002 IEEEWe consider the problem of fixed-interval smoothing of a continuous-time partially observed nonlinear stochastic dynamical system. Existing results for such smoothers require the use of two-sided stochastic calculus. The main contribution of the paper is to present a robust formulation of the smoothing equations. Under this robust formulation, the smoothing equations are nonstochastic parabolic partial differential equations (with random coefficients) and, hence, the technical machinery associated with two sided stochastic calculus is not required. Furthermore, the robust smoothed state estimates are locally Lipschitz in the observations, which is useful for numerical simulation. As examples, finite dimensional robust versions of the Benes and hidden Markov model smoothers and smoothers for piecewise linear dynamics are derived; these finite-dimensional smoothers do not involve stochastic integrals.Vikram Krishnamurthy and Robert Elliot

    Robust M-ary detection filters and smoothers for continuous-time jump Markov systems

    Get PDF
    In this paper, we consider a dynamic M-ary detection problem when Markov chains are observed through a Wiener process. These systems are fully specified by a candidate set of parameters, whose elements are, a rate matrix for the Markov chain and a parameter for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. Given such an observation process and a specified collection of models, we estimate the probabilities of each model parameter set explaining the observation. By defining a new augmented state process, then applying the method of reference probability, we compute matrix-valued dynamics, whose solutions estimate joint probabilities for all combinations of candidate model parameter sets and values taken by the indirectly observed state process. These matrix-valued dynamics satisfy a stochastic integral equation with a Wiener process integrator. Using the gauge transformation techniques introduced by Clark and a pointwise matrix product, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics, the observation Wiener process appears as a parameter matrix in a linear ordinary differential equation, rather than an integrator in a stochastic integral equation. It is shown that these robust dynamics, when discretised, enjoy a deterministic upper bound which ensures nonnegative probabilities for any observation sample path. In contrast, no such upper bounds can be computed for Taylor expansion approximations, such as the Euler-Maryauana and Milstein schemes. Finally, by exploiting a duality between causal and anticausal robust detector dynamics, we develop an algorithm to compute smoothed mode probability estimates without stochastic integrations. A computer simulation demonstrating performance is included.Robert J. Elliott and W. P. Malcol

    Evaluating Structural Models for the U.S. Short Rate Using EMM and Particle Filters

    Get PDF
    We combine the efficient method of moments with appropriate algorithms from the optimal filtering literature to study a collection of models for the U.S. short rate. Our models include two continuous-time stochastic volatility models and two regime switching models, which provided the best fit in previous work that examined a large collection of models. The continuous-time stochastic volatility models fall into the class of nonlinear, non-Gaussian state space models for which we apply particle filtering and smoothing algorithms. Our results demonstrate the effectiveness of the particle filter for continuous-time processes. Our analysis also provides an alternative and complementary approach to the reprojection technique of Gallant and Tauchen (1998) for studying the dynamics of volatility.

    EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies

    Get PDF
    In this paper we study parameter estimation via the Expectation Maximization (EM) algorithm for a continuous-time hidden Markov model with diffusion and point process observation. Inference problems of this type arise for instance in credit risk modelling. A key step in the application of the EM algorithm is the derivation of finite-dimensional filters for the quantities that are needed in the E-Step of the algorithm. In this context we obtain exact, unnormalized and robust filters, and we discuss their numerical implementation. Moreover, we propose several goodness-of-fit tests for hidden Markov models with Gaussian noise and point process observation. We run an extensive simulation study to test speed and accuracy of our methodology. The paper closes with an application to credit risk: we estimate the parameters of a hidden Markov model for credit quality where the observations consist of rating transitions and credit spreads for US corporations

    A deterministic discretisation-step upper bound for state estimation via Clark transformations

    Get PDF
    Copyright Ā© 2004 Hindawi Publishing CorporationWe consider the numerical stability of discretisation schemes for continuous-time state estimation filters. The dynamical systems we consider model the indirect observation of a continuous-time Markov chain. Two candidate observation models are studied. These models are (a) the observation of the state through a Brownian motion, and (b) the observation of the state through a Poisson process. It is shown that for robust filters (via Clark's transformation), one can ensure nonnegative estimated probabilities by choosing a maximum grid step to be no greater than a given bound. The importance of this result is that one can choose an a priori grid step maximum ensuring nonnegative estimated probabilities. In contrast, no such upper bound is available for the standard approximation schemes. Further, this upper bound also applies to the corresponding robust smoothing scheme, in turn ensuring stability for smoothed state estimates.W. P. Malcolm, R. J. Elliott, and J. van der Hoe

    Online Sequential Monte Carlo smoother for partially observed stochastic differential equations

    Full text link
    This paper introduces a new algorithm to approximate smoothed additive functionals for partially observed stochastic differential equations. This method relies on a recent procedure which allows to compute such approximations online, i.e. as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. This online smoother cannot be used directly in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that a similar algorithm may still be defined for partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. We prove that this estimator is consistent and its performance are illustrated using data from two models

    Lumpable hidden Markov models - model reduction and reduced complexity filtering

    Get PDF
    Copyright Ā© 2000 IEEEThis paper is concerned with filtering of hidden Markov processes (HMP) which possess (or approximately possess) the property of lumpability. This property is a generalization of the property of lumpability of a Markov chain which has been previously addressed by others. In essence, the property of lumpability means that there is a partition of the (atomic) states of the Markov chain into aggregated sets which act in a similar manner as far as the state dynamics and observation statistics are concerned. We prove necessary and sufficient conditions on the HMP for exact lumpability to hold. For a particular class of hidden Markov models (HMM), namely finite output alphabet models, conditions for lumpability of all HMP representable by a specified HMM are given. The corresponding optimal filter algorithms for the aggregated states are then derived. The paper also describes an approach to efficient suboptimal filtering for HMP which are approximately lumpable. By this we mean that the HMM generating the process may be approximated by a lumpable HMM. This approach involves directly finding a lumped HMM which approximates the original HMM well, in a matrix norm sense. An alternative approach for model reduction based on approximating a given HMM by an exactly lumpable HMM is also derived. This method is based on the alternating convex projections algorithm. Some simulation examples are presented which illustrate the performance of the suboptimal filtering algorithmsLangford B. White, Robert Mahony and Gary D. Brush
    corecore