2,752 research outputs found

    Concentration phenomena for critical fractional Schr\"odinger systems

    Full text link
    In this paper we study the existence, multiplicity and concentration behavior of solutions for the following critical fractional Schr\"odinger system \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s} (-\Delta)^{s}u+V(x) u=Q_{u}(u, v)+\frac{1}{2^{*}_{s}}K_{u}(u, v) &\mbox{ in } \mathbb{R}^{N}\varepsilon^{2s} (-\Delta)^{s}u+W(x) v=Q_{v}(u, v)+\frac{1}{2^{*}_{s}}K_{v}(u, v) &\mbox{ in } \mathbb{R}^{N} u, v>0 &\mbox{ in } \R^{N}, \end{array} \right. \end{equation*} where ε>0\varepsilon>0 is a parameter, s∈(0,1)s\in (0, 1), N>2sN>2s, (−Δ)s(-\Delta)^{s} is the fractional Laplacian operator, V:RN→RV:\mathbb{R}^{N}\rightarrow \mathbb{R} and W:RN→RW:\mathbb{R}^{N}\rightarrow \mathbb{R} are positive H\"older continuous potentials, QQ and KK are homogeneous C2C^{2}-functions having subcritical and critical growth respectively. We relate the number of solutions with the topology of the set where the potentials VV and WW attain their minimum values. The proofs rely on the Ljusternik-Schnirelmann theory and variational methods.Comment: arXiv admin note: text overlap with arXiv:1704.0060

    The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation

    Get PDF
    The nontrivial behavior of wave packets in the space fractional coupled nonlinear Schrödinger equation has received considerable theoretical attention. The difficulty comes from the fact that the Riesz fractional derivative is inherently a prehistorical operator. In contrast, nonlinear Schrödinger equation with both time and space nonlocal operators, which is the cornerstone in the modeling of a new type of fractional quantum couplers, is still in high demand of attention. This paper is devoted to numerically study the propagation of solitons through a new type of quantum couplers which can be called time-space fractional quantum couplers. The numerical methodology is based on the finite-difference/Galerkin Legendre spectral method with an easy to implement numerical algorithm. The time-fractional derivative is considered to describe the decay behavior and the nonlocal memory of the model. We conduct numerical simulations to observe the performance of the tunable decay and the sharpness behavior of the time-space fractional strongly coupled nonlinear Schrödinger model as well as the performance of the numerical algorithm. Numerical simulations show that the time and space fractional-order operators control the decay behavior or the memory and the sharpness of the interface and undergo a seamless transition of the fractional-order parameters

    Analysis of models for quantum transport of electrons in graphene layers

    Full text link
    We present and analyze two mathematical models for the self consistent quantum transport of electrons in a graphene layer. We treat two situations. First, when the particles can move in all the plane \RR^2, the model takes the form of a system of massless Dirac equations coupled together by a selfconsistent potential, which is the trace in the plane of the graphene of the 3D Poisson potential associated to surface densities. In this case, we prove local in time existence and uniqueness of a solution in H^s(\RR^2), for s>3/8s > 3/8 which includes in particular the energy space H^{1/2}(\RR^2). The main tools that enable to reach s∈(3/8,1/2)s\in (3/8,1/2) are the dispersive Strichartz estimates that we generalized here for mixed quantum states. Second, we consider a situation where the particles are constrained in a regular bounded domain Ω\Omega. In order to take into account Dirichlet boundary conditions which are not compatible with the Dirac Hamiltonian H0H_{0}, we propose a different model built on a modified Hamiltonian displaying the same energy band diagram as H0H_{0} near the Dirac points. The well-posedness of the system in this case is proved in HAsH^s_{A}, the domain of the fractional order Dirichlet Laplacian operator, for 1/2≤s<5/21/2\leq s<5/2

    Quantum Mechanics and Control Using Fractional Calculus: A Study of the Shutter Problem for Fractional Quantum Fields

    Get PDF
    The ‘diffraction in space’ and the ‘diffraction in time’ phenomena are considered in regard to a continuously open, and a closed shutter that is opened at an instant in time, respectively. The purpose of this is to provide a background to the principal theme of this article, which is to extend the ‘quantum shutter problem’ for the case when the wave function is determined by the fundamental solution to a partial differential equation with a fractional derivative of space or of time. This involves the development of Green’s function solutions for the space- and time-fractional Schrödinger equation and the time-fractional Klein–Gordon equation (for the semi-relativistic case). In each case, the focus is on the development of primarily one-dimensional solutions, subject to an initial condition which controls the dynamical behaviour of the wave function. Coupled with variations in the fractional order of the fractional derivatives, illustrative example results are provided that are based on presenting space-time maps of the wave function; specifically, the probability density of the wave function. In this context, the paper provides a case study of fractional quantum mechanics and control using fractional calculus

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    open access articleMotivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge-Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schrödinger equation in (2 + 1)-dimensions

    Get PDF
    In this work, we consider the chiral nonlinear Schrödinger equation in (2 + 1)-dimensions, which describes the envelope of amplitude in many physical media. We employ the Lie symmetry analysis method to study the vector field and the optimal system of the equation. The similarity reductions are analyzed by considering the optimal system. Furthermore, we find the power series solution of the equation with convergence analysis. Based on a new conservation law, we construct the conservation laws of the equation by using the resulting symmetries.&nbsp

    Internal observability for coupled systems of linear partial differential equations

    Get PDF
    First published in Journal on Control and Optimization in 57.2 (2019): 832-853, published by the Society for Industrial and Applied Mathematics (SIAM)We deal with the internal observability for some coupled systems of partial differential equations with constant or time-dependent coupling terms by means of a reduced number of observed components. We prove new general observability inequalities under some Kalman-like or Silverman-Meadows-like condition. Our proofs combine the observability properties of the underlying scalar equation with algebraic manipulations. In the more specific case of systems of heat equations with constant coefficients and nondiagonalizable diffusion matrices, we also give a new necessary and sufficient condition for observability in the natural L2-setting. The proof relies on the use of the Lebeau-Robbiano strategy together with a precise study of the cost of controllability for linear ordinary differential equations, and allows us to treat the case where each component of the system is observed in a different subdomainPierre Lissy is partially supported by the project IFSMACS (ANR-15-CE40-0010) funded by the french Agence Nationale de la Recherche, 2015-2019. Enrique Zuazua is partially supported by the Advanced Grant DYCON (Dynamic Control) of the European Research Council Executive Agency, FA9550-15-1-0027 of AFOSR, FA9550-14-1-0214 of the EOARD-AFOSR, the MTM2014-52347 and MTM2017-92996 Grants of the MINECO (Spain) and ICON (ANR-16-ACHN-0014) of the French Agence Nationale de la Recherch

    Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation

    Get PDF
    In this paper, complex and combined dark-bright characteristic properties of nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable are extracted by using two powerful analytical approaches. Many graphical representations such as 2D, 3D and contour are also reported. Finally, general conclusions of about the novel findings are introduced at the end of this manuscript
    • …
    corecore