38 research outputs found

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Linearization of The Timing Analysis and Optimization of Level-Sensitive Circuits

    Get PDF
    This thesis describes a linear programming (LP) formulation applicable to the static timing analysis of large scale synchronous circuits with level-sensitive latches. The automatic timing analysis procedure presented here is composed of deriving the connectivity information, constructing the LP model and solving the clock period minimization problem of synchronous digital VLSI circuits. In synchronous circuits with level-sensitive latches, operation at a reduced clock period (higher clock frequency) is possible by takingadvantage of both non-zero clock skew scheduling and time borrowing. Clock skew schedulingis performed in order to exploit the benefits of nonidentical clock signal delays on circuit timing. The time borrowing property of level-sensitive circuits permits higher operating frequencies compared to edge-sensitivecircuits. Considering time borrowing in the timing analysis, however, introduces non-linearity in this timing analysis. The modified big M (MBM) method is defined in order to transform the non-linear constraints arising in the problem formulation into solvable linear constraints. Equivalent LP model problemsfor single-phase clock synchronization of the ISCAS'89 benchmark circuits are generated and these problems are solved by the industrial LP solver CPLEX. Through the simultaneous application of time borrowing and clock skew scheduling, up to 63% improvements are demonstrated in minimum clock period with respect to zero-skew edge-sensitive synchronous circuits. The timing constraints governing thelevel-sensitive synchronous circuit operation not only solve the clock period minimization problem but also provide a common framework for the general timing analysis of such circuits. The inclusion of additional constraints into the problem formulation in order to meet the timing requirements imposed by specific applicationenvironments is discussed

    Advanced Timing and Synchronization Methodologies for Digital VLSI Integrated Circuits

    Get PDF
    This dissertation addresses timing and synchronization methodologies that are critical to the design, analysis and optimization of high-performance, integrated digital VLSI systems. As process sizes shrink and design complexities increase, achieving timing closure for digital VLSI circuits becomes a significant bottleneck in the integrated circuit design flow. Circuit designers are motivated to investigate and employ alternative methods to satisfy the timing and physical design performance targets. Such novel methods for the timing and synchronization of complex circuitry are developed in this dissertation and analyzed for performance and applicability.Mainstream integrated circuit design flow is normally tuned for zero clock skew, edge-triggered circuit design. Non-zero clock skew or multi-phase clock synchronization is seldom used because the lack of design automation tools increases the length and cost of the design cycle. For similar reasons, level-sensitive registers have not become an industry standard despite their superior size, speed and power consumption characteristics compared to conventional edge-triggered flip-flops.In this dissertation, novel design and analysis techniques that fully automate the design and analysis of non-zero clock skew circuits are presented. Clock skew scheduling of both edge-triggered and level-sensitive circuits are investigated in order to exploit maximum circuit performances. The effects of multi-phase clocking on non-zero clock skew, level-sensitive circuits are investigated leading to advanced synchronization methodologies. Improvements in the scalability of the computational timing analysis process with clock skew scheduling are explored through partitioning and parallelization.The integration of the proposed design and analysis methods to the physical design flow of integrated circuits synchronized with a next-generation clocking technology-resonant rotary clocking technology-is also presented. Based on the design and analysis methods presented in this dissertation, a computer-aided design tool for the design of rotary clock synchronized integrated circuits is developed

    Study on the maximum speed and reliability assurance in wave pipeline-based combinational circuits

    Get PDF
    Scope and Method of Study: Wave pipeline is one of the revolutionary technologies beyond conventional pipeline in the microprocessor architecture research area. Clockless wave pipeline is the cutting-edge and innovative pipeline without relying on clock signal. Due to the stringent requirement for high density and performance of current VLSI technology, reliability is being considered as one of the most crucial issues. Reliability modeling and optimization techniques have been applied extensively. Clock frequency is one of the keys to achieve the fast circuit speed. A clock cycle time optimization and analysis method is proposed in order to achieve a ultra high clock frequency in the context of the proposed new wave pipeline.Findings and Conclusions: The reliability-driven design and optimization techniques for the clockless wave pipeline are proposed. It is mainly focused on the two parts, i.e., request signal and datawave. A more aggressive technology beyond wave pipeline with ultra-high throughput and speed towards maximum circuit frequency is mainly proposed, analyzed, simulated, and verified

    Hybrid Synchronous / Asynchronous Design

    Full text link

    Sincronização em sistemas integrados a alta velocidade

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA distribui ção de um sinal relógio, com elevada precisão espacial (baixo skew) e temporal (baixo jitter ), em sistemas sí ncronos de alta velocidade tem-se revelado uma tarefa cada vez mais demorada e complexa devido ao escalonamento da tecnologia. Com a diminuição das dimensões dos dispositivos e a integração crescente de mais funcionalidades nos Circuitos Integrados (CIs), a precisão associada as transições do sinal de relógio tem sido cada vez mais afectada por varia ções de processo, tensão e temperatura. Esta tese aborda o problema da incerteza de rel ogio em CIs de alta velocidade, com o objetivo de determinar os limites do paradigma de desenho sí ncrono. Na prossecu ção deste objectivo principal, esta tese propõe quatro novos modelos de incerteza com âmbitos de aplicação diferentes. O primeiro modelo permite estimar a incerteza introduzida por um inversor est atico CMOS, com base em parâmetros simples e su cientemente gen éricos para que possa ser usado na previsão das limitações temporais de circuitos mais complexos, mesmo na fase inicial do projeto. O segundo modelo, permite estimar a incerteza em repetidores com liga ções RC e assim otimizar o dimensionamento da rede de distribui ção de relógio, com baixo esfor ço computacional. O terceiro modelo permite estimar a acumula ção de incerteza em cascatas de repetidores. Uma vez que este modelo tem em considera ção a correla ção entre fontes de ruí do, e especialmente util para promover t ecnicas de distribui ção de rel ogio e de alimentação que possam minimizar a acumulação de incerteza. O quarto modelo permite estimar a incerteza temporal em sistemas com m ultiplos dom ínios de sincronismo. Este modelo pode ser facilmente incorporado numa ferramenta autom atica para determinar a melhor topologia para uma determinada aplicação ou para avaliar a tolerância do sistema ao ru ído de alimentação. Finalmente, usando os modelos propostos, são discutidas as tendências da precisão de rel ogio. Conclui-se que os limites da precisão do rel ogio são, em ultima an alise, impostos por fontes de varia ção dinâmica que se preveem crescentes na actual l ogica de escalonamento dos dispositivos. Assim sendo, esta tese defende a procura de solu ções em outros ní veis de abstração, que não apenas o ní vel f sico, que possam contribuir para o aumento de desempenho dos CIs e que tenham um menor impacto nos pressupostos do paradigma de desenho sí ncrono.Distributing a the clock simultaneously everywhere (low skew) and periodically everywhere (low jitter) in high-performance Integrated Circuits (ICs) has become an increasingly di cult and time-consuming task, due to technology scaling. As transistor dimensions shrink and more functionality is packed into an IC, clock precision becomes increasingly a ected by Process, Voltage and Temperature (PVT) variations. This thesis addresses the problem of clock uncertainty in high-performance ICs, in order to determine the limits of the synchronous design paradigm. In pursuit of this main goal, this thesis proposes four new uncertainty models, with di erent underlying principles and scopes. The rst model targets uncertainty in static CMOS inverters. The main advantage of this model is that it depends only on parameters that can easily be obtained. Thus, it can provide information on upcoming constraints very early in the design stage. The second model addresses uncertainty in repeaters with RC interconnects, allowing the designer to optimise the repeater's size and spacing, for a given uncertainty budget, with low computational e ort. The third model, can be used to predict jitter accumulation in cascaded repeaters, like clock trees or delay lines. Because it takes into consideration correlations among variability sources, it can also be useful to promote oorplan-based power and clock distribution design in order to minimise jitter accumulation. A fourth model is proposed to analyse uncertainty in systems with multiple synchronous domains. It can be easily incorporated in an automatic tool to determine the best topology for a given application or to evaluate the system's tolerance to power-supply noise. Finally, using the proposed models, this thesis discusses clock precision trends. Results show that limits in clock precision are ultimately imposed by dynamic uncertainty, which is expected to continue increasing with technology scaling. Therefore, it advocates the search for solutions at other abstraction levels, and not only at the physical level, that may increase system performance with a smaller impact on the assumptions behind the synchronous design paradigm

    Script Effects as the Hidden Drive of the Mind, Cognition, and Culture

    Get PDF
    This open access volume reveals the hidden power of the script we read in and how it shapes and drives our minds, ways of thinking, and cultures. Expanding on the Linguistic Relativity Hypothesis (i.e., the idea that language affects the way we think), this volume proposes the “Script Relativity Hypothesis” (i.e., the idea that the script in which we read affects the way we think) by offering a unique perspective on the effect of script (alphabets, morphosyllabaries, or multi-scripts) on our attention, perception, and problem-solving. Once we become literate, fundamental changes occur in our brain circuitry to accommodate the new demand for resources. The powerful effects of literacy have been demonstrated by research on literate versus illiterate individuals, as well as cross-scriptal transfer, indicating that literate brain networks function differently, depending on the script being read. This book identifies the locus of differences between the Chinese, Japanese, and Koreans, and between the East and the West, as the neural underpinnings of literacy. To support the “Script Relativity Hypothesis”, it reviews a vast corpus of empirical studies, including anthropological accounts of human civilization, social psychology, cognitive psychology, neuropsychology, applied linguistics, second language studies, and cross-cultural communication. It also discusses the impact of reading from screens in the digital age, as well as the impact of bi-script or multi-script use, which is a growing trend around the globe. As a result, our minds, ways of thinking, and cultures are now growing closer together, not farther apart. ; Examines the origin, emergence, and co-evolution of written language, the human mind, and culture within the purview of script effects Investigates how the scripts we read over time shape our cognition, mind, and thought patterns Provides a new outlook on the four representative writing systems of the world Discusses the consequences of literacy for the functioning of the min
    corecore