39,563 research outputs found

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Event-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraft

    Get PDF
    Numerous high-thrust and low-thrust space propulsion technologies have been developed in the recent years with the goal of expanding space exploration capabilities; however, designing and optimizing a multi-mission campaign with both high-thrust and low-thrust propulsion options are challenging due to the coupling between logistics mission design and trajectory evaluation. Specifically, this computational burden arises because the deliverable mass fraction (i.e., final-to-initial mass ratio) and time of flight for low-thrust trajectories can can vary with the payload mass; thus, these trajectory metrics cannot be evaluated separately from the campaign-level mission design. To tackle this challenge, this paper develops a novel event-driven space logistics network optimization approach using mixed-integer linear programming for space campaign design. An example case of optimally designing a cislunar propellant supply chain to support multiple lunar surface access missions is used to demonstrate this new space logistics framework. The results are compared with an existing stochastic combinatorial formulation developed for incorporating low-thrust propulsion into space logistics design; our new approach provides superior results in terms of cost as well as utilization of the vehicle fleet. The event-driven space logistics network optimization method developed in this paper can trade off cost, time, and technology in an automated manner to optimally design space mission campaigns.Comment: 38 pages; 11 figures; Journal of Spacecraft and Rockets (Accepted); previous version presented at the AAS/AIAA Astrodynamics Specialist Conference, 201

    Electricity Market Designs for Demand Response from Residential Customers

    Get PDF
    The main purpose of this dissertation is to design an appropriate tariff program for residential customers that encourages customers to participate in the system while satisfying market operators and utilities goals. This research investigates three aspects critical for successful programs: tariff designs for DR, impact of renewable on such tariffs, and load elasticity estimates. First, both categories of DR are modeled based on the demand-price elasticity concept and used to design an optimum scheme for achieving the maximum benefit of DR. The objective is to not only reduce costs and improve reliability but also to increase customer acceptance of a DR program by limiting price volatility. A time of use (TOU) program is considered for a PB scheme designed using a monthly peak and off peak tariff. For the IBDR, a novel optimization is proposed that in addition to calculation of an adequate and a reasonable amount of load change for the incentive also finds the best times to request DR. Second, the effect of both DR programs under a high penetration of renewable resources is investigated. LMP variation after renewable expansion is more highly correlated with renewable’s intermittent output than the load profile. As a result, a TOU program is difficult to successfully implement; however, analysis shows IBDR can diminish most of the volatile price changes in WECC. To model risk associated with renewable uncertainty, a robust optimization is designed considering market price and elasticity uncertainty. Third, a comprehensive study to estimate residential load elasticity in an IBDR program. A key component in all demand response programs design is elasticity, which implies customer reaction to LSEs offers. Due to limited information, PB elasticity is used in IBDR as well. Customer elasticity is calculated using data from two nationwide surveys and integrated with a detailed residential load model. In addition, IB elasticity is reported at the individual appliance level, which is more effective than one for the aggregate load of the feeder. Considering the importance of HVAC in the aggregate load signal, its elasticity is studied in greater detail and estimated for different customer groupings

    Optimization Approaches for Electricity Generation Expansion Planning Under Uncertainty

    Get PDF
    In this dissertation, we study the long-term electricity infrastructure investment planning problems in the electrical power system. These long-term capacity expansion planning problems aim at making the most effective and efficient investment decisions on both thermal and wind power generation units. One of our research focuses are uncertainty modeling in these long-term decision-making problems in power systems, because power systems\u27 infrastructures require a large amount of investments, and need to stay in operation for a long time and accommodate many different scenarios in the future. The uncertainties we are addressing in this dissertation mainly include demands, electricity prices, investment and maintenance costs of power generation units. To address these future uncertainties in the decision-making process, this dissertation adopts two different optimization approaches: decision-dependent stochastic programming and adaptive robust optimization. In the decision-dependent stochastic programming approach, we consider the electricity prices and generation units\u27 investment and maintenance costs being endogenous uncertainties, and then design probability distribution functions of decision variables and input parameters based on well-established econometric theories, such as the discrete-choice theory and the economy-of-scale mechanism. In the adaptive robust optimization approach, we focus on finding the multistage adaptive robust solutions using affine policies while considering uncertain intervals of future demands. This dissertation mainly includes three research projects. The study of each project consists of two main parts, the formulation of its mathematical model and the development of solution algorithms for the model. This first problem concerns a large-scale investment problem on both thermal and wind power generation from an integrated angle without modeling all operational details. In this problem, we take a multistage decision-dependent stochastic programming approach while assuming uncertain electricity prices. We use a quasi-exact solution approach to solve this multistage stochastic nonlinear program. Numerical results show both computational efficient of the solutions approach and benefits of using our decision-dependent model over traditional stochastic programming models. The second problem concerns the long-term investment planning with detailed models of real-time operations. We also take a multistage decision-dependent stochastic programming approach to address endogenous uncertainties such as generation units\u27 investment and maintenance costs. However, the detailed modeling of operations makes the problem a bilevel optimization problem. We then transform it to a Mathematic Program with Equilibrium Constraints (MPEC) problem. We design an efficient algorithm based on Dantzig-Wolfe decomposition to solve this multistage stochastic MPEC problem. The last problem concerns a multistage adaptive investment planning problem while considering uncertain future demand at various locations. To solve this multi-level optimization problem, we take advantage of affine policies to transform it to a single-level optimization problem. Our numerical examples show the benefits of using this multistage adaptive robust planning model over both traditional stochastic programming and single-level robust optimization approaches. Based on numerical studies in the three projects, we conclude that our approaches provide effective and efficient modeling and computational tools for advanced power systems\u27 expansion planning
    • …
    corecore