818 research outputs found

    Multiservice QoS-Enabled MAC for Optical Burst Switching

    Get PDF
    The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks

    Terabit Burst Switching Final Report

    Get PDF
    This is the final report For Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. The primary objective of the project has been to demonstrate the feasibility of Burst Switching, a new data communication service, which seeks to more effectively exploit the large bandwidths becoming available in WDM transmission systems. Burst switching systems dynamically assign data bursts to channels in optical datalinks, using routing information carried in parallel control channels

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Cost functions in optical burst-switched networks

    Get PDF
    Optical Burst Switching (OBS) is a new paradigm for an all-optical Internet. It combines the best features of Optical Circuit Switching (OCS) and Optical Packet Switching (OPS) while avoidmg the mam problems associated with those networks .Namely, it offers good granularity, but its hardware requirements are lower than those of OPS. In a backbone network, low loss ratio is of particular importance. Also, to meet varying user requirements, it should support multiple classes of service. In Optical Burst-Switched networks both these goals are closely related to the way bursts are arranged in channels. Unlike the case of circuit switching, scheduling decisions affect the loss probability of future burst This thesis proposes the idea of a cost function. The cost function is used to judge the quality of a burst arrangement and estimate the probability that this burst will interfere with future bursts. Two applications of the cost functio n are proposed. A scheduling algorithm uses the value of the cost function to optimize the alignment of the new burst with other bursts in a channel, thus minimising the loss ratio. A cost-based burst droppmg algorithm, that can be used as a part of a Quality of Service scheme, drops only those bursts, for which the cost function value indicates that are most likely to cause a contention. Simulation results, performed using a custom-made OBS extension to the ns-2 simulator, show that the cost-based algorithms improve network performanc

    AVANCES HACIA CONMUTACIÓN Y ENRUTAMIENTO COMPLETAMENTE ÓPTICOS EN REDES TIPO CORE

    Get PDF
    RESUMEN En la última década Internet ha tenido un crecimiento exponencial en el número de usuarios nuevos haciendo que las expectativas en cuanto a la calidad del servicio recibido sean evaluadas constantemente. Estas y otras exigencias constituyen la problemática principal que se relaciona con el comportamiento y desempeño en la infraestructura de las redes de acceso y tipo core definidas como soporte para las denominadas redes de próxima generación o NGN con orientación “todo IP”, es así como las propuestas en cuanto al soporte óptico desarrolladas hasta el momento, no aseguran que los resultados de su despliegue sean satisfactorios. Las redes ópticas surgen como una de las tecnologías más prometedoras para cubrir la demanda en cuanto a ancho de banda, capacidad de la red, calidad de servicio y desempeño. Lo anterior se soporta en el hecho del gran número de investigaciones que se están llevando a cabo por parte de Universidades, empresas y grupos alrededor del mundo respecto a las telecomunicaciones ópticas. OBS y OPS (conmutación óptica de ráfagas y de paquetes, respectivamente) son los avances con mayor relevancia en la actualidad prometiendo una red tipo core adaptable a los requerimientos de los servicios y a los cambios en la infraestructura de la red. Los avances más recientes en estas tecnologías aseguran un mejor aprovechamiento de la infraestructura óptica existente y por desplegar, asegurando procesos completamente ópticos (conmutación y enrutamiento) con retardos mínimos jamás alcanzados hasta ahora. PALABRAS CLAVES: Redes de Próxima Generación, Conmutación Óptica de Paquetes, Conmutación Óptica de Ráfagas, Calidad de Servicio y Dominio Óptico.  ANALYTICAL SUMMARY In the last decade Internet has experienced an explosive growth due to numbers of new users as well as their expectations to quality of receiving services. These changes are major problem in core networks and the technology used so far does not assure satisfying results. Optical networks have emerged as a promising technology to fulfill growing demands on networks capacity, Quality of Service and performance. Moreover, a wide variety of technologies of fiber communication and networking are focus of research in optical telecommunication domain. Optical Packet/ Burst Switching Network (OPS/OBS) is a promising technology to present and future core networks due to best network utilization and adaptability to changes in the network infrastructure (core network).  KEYWORDS: Next Generation Networks, Optical Packet and Burst Switching, Quality of Service and Optical domain

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times
    corecore