5,792,437 research outputs found

    Implementation of quasi-static time series simulations for analysis of the impact of electric vehicles on the grid

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, symmetrical electric vehicle charging impacts in existing low-voltage distribution grid are investigated throughout proposed methodology and their results analysed. Symmetrical loading- and voltage-related impacts are assessed for the extensive grid. A synthetic EV mix pattern was used with the purpose to demonstrate a universal observation of charging impacts. These patterns were allocated quasi-randomly to the points of common coupling within the grid based on predefined scenarios - 8, 10, 12 and 20 percent. Subsequently, quasi-static time series simulations for a duration of one year in 10-minute time steps were executed. Consequently, this paper yields results, which offer practical insight in the maximum share of electric vehicle charging in low-voltage distribution grids and provide guidance for future decision-making of distribution grid operators

    Surrogate time series

    Full text link
    Before we apply nonlinear techniques, for example those inspired by chaos theory, to dynamical phenomena occurring in nature, it is necessary to first ask if the use of such advanced techniques is justified "by the data". While many processes in nature seem very unlikely a priori to be linear, the possible nonlinear nature might not be evident in specific aspects of their dynamics. The method of surrogate data has become a very popular tool to address such a question. However, while it was meant to provide a statistically rigorous, foolproof framework, some limitations and caveats have shown up in its practical use. In this paper, recent efforts to understand the caveats, avoid the pitfalls, and to overcome some of the limitations, are reviewed and augmented by new material. In particular, we will discuss specific as well as more general approaches to constrained randomisation, providing a full range of examples. New algorithms will be introduced for unevenly sampled and multivariate data and for surrogate spike trains. The main limitation, which lies in the interpretability of the test results, will be illustrated through instructive case studies. We will also discuss some implementational aspects of the realisation of these methods in the TISEAN (http://www.mpipks-dresden.mpg.de/~tisean) software package.Comment: 28 pages, 23 figures, software at http://www.mpipks-dresden.mpg.de/~tisea

    Modelling Stabilometric Time Series

    Get PDF
    Stabilometry is a branch of medicine that studies balance-related human functions. Stabilometric systems generate time series. The analysis of these time series using data mining techniques can be very useful for domain experts. In the field of stabilometry, as in many other domains, the key nuggets of information in a time series are concentrated within definite time periods known as events. In this paper, we propose a technique for creating reference models for stabilometric time series based on event analysis. After testing the technique on time series recorded by top-competition sportspeople, we conclude that stabilometric models can be used to classify individuals by their balance-related abilitie

    Bootstraping financial time series

    Get PDF
    It is well known that time series of returns are characterized by volatility clustering and excess kurtosis. Therefore, when modelling the dynamic behavior of returns, inference and prediction methods, based on independent and/or Gaussian observations may be inadequate. As bootstrap methods are not, in general, based on any particular assumption on the distribution of the data, they are well suited for the analysis of returns. This paper reviews the application of bootstrap procedures for inference and prediction of financial time series. In relation to inference, bootstrap techniques have been applied to obtain the sample distribution of statistics for testing, for example, autoregressive dynamics in the conditional mean and variance, unit roots in the mean, fractional integration in volatility and the predictive ability of technical trading rules. On the other hand, bootstrap procedures have been used to estimate the distribution of returns which is of interest, for example, for Value at Risk (VaR) models or for prediction purposes. Although the application of bootstrap techniques to the empirical analysis of financial time series is very broad, there are few analytical results on the statistical properties of these techniques when applied to heteroscedastic time series. Furthermore, there are quite a few papers where the bootstrap procedures used are not adequate.Publicad

    Antipersistent binary time series

    Full text link
    Completely antipersistent binary time series are sequences in which every time that an NN-bit string μ\mu appears, the sequence is continued with a different bit than at the last occurrence of μ\mu. This dynamics is phrased in terms of a walk on a DeBruijn graph, and properties of transients and cycles are studied. The predictability of the generated time series for an observer who sees a longer or shorter time window is investigated also for sequences that are not completely antipersistent.Comment: 6 pages, 6 figure

    Multifractality in Time Series

    Full text link
    We apply the concepts of multifractal physics to financial time series in order to characterize the onset of crash for the Standard & Poor's 500 stock index x(t). It is found that within the framework of multifractality, the "analogous" specific heat of the S&P500 discrete price index displays a shoulder to the right of the main peak for low values of time lags. On decreasing T, the presence of the shoulder is a consequence of the peaked, temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80), we have found that C_{q} displays typical features of a classical phase transition at a critical point. An example of such dynamic phase transition in a simple economic model system, based on a mapping with multifractality phenomena in random multiplicative processes, is also presented by applying former results obtained with a continuous probability theory for describing scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000
    corecore