38,180 research outputs found

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures

    A pedagogical framework for embedding C&IT into the curriculum

    Get PDF
    This paper proposes a methodology for effectively embedding communication and information technologies (C&IT) into the curriculum. This builds on existing frameworks for designing courses involving C&IT. A hypothetical illustration of this process is provided, and issues relating to the adoption and application of the methodology are identified

    Evolution of associative learning in chemical networks

    Get PDF
    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ’memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells

    Integrative Use of Information Extraction, Semantic Matchmaking and Adaptive Coupling Techniques in Support of Distributed Information Processing and Decision-Making

    No full text
    In order to press maximal cognitive benefit from their social, technological and informational environments, military coalitions need to understand how best to exploit available information assets as well as how best to organize their socially-distributed information processing activities. The International Technology Alliance (ITA) program is beginning to address the challenges associated with enhanced cognition in military coalition environments by integrating a variety of research and development efforts. In particular, research in one component of the ITA ('Project 4: Shared Understanding and Information Exploitation') is seeking to develop capabilities that enable military coalitions to better exploit and distribute networked information assets in the service of collective cognitive outcomes (e.g. improved decision-making). In this paper, we provide an overview of the various research activities in Project 4. We also show how these research activities complement one another in terms of supporting coalition-based collective cognition
    corecore