457 research outputs found

    An Efficient Method for Selecting the Optimal Structure of a Fuzzy Neural Network Architecture

    Get PDF
    The fusion of artificial neural networks with soft computing enables to construct learning machines that are superior compared to classical artificial neural networks, because knowledge can be extracted and explained in the form of simple rules. An efficient method for selecting the optimal structure of a fuzzy neural network architecture is developed. The Vapnik Chervonenkis (VC) dimension is introduced as a measure of the capacity of the learning machine. A prediction of the expected error on the yet unseen examples is estimated with the help of the VC dimension. The structural risk minimization principle is introduced for constructing the optimal architecture with the lowest expected error for the small data sets. A comparison between fuzzy neural network and the neural network ARX model is presented

    An investigation of a new social networks contact suggestion based on face recognition algorithm

    Get PDF
    Automated comparison of faces in the photographs is a well established discipline. The main aim of this paper is to describe an approach whereby face recognition can be used in suggestion of a new contacts. The new contact suggestion is a common technique used across all main social networks. Our approach uses a freely available face comparison called "Betaface" together with our automated processig of the user´s Facebook profile. The research´s main point of interest is the comparison of friend´s facial images in a social network itself, how to process such a great amount of photos and what additional sources of data should be used. In this approach we used our automated processing algorithm Betaface in the social network Facebook and for the additional data, the Flickr social network was used. The results and their quality are discussed at the end

    Optimizing the operating conditions in a high precision industrial process using soft computing techniques

    Get PDF
    This interdisciplinary research is based on the application of unsupervized connectionist architectures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new high precision industrial process known as laser milling. Laser milling is a relatively new micro-manufacturing technique in the production of high-value industrial components. The industrial problem is defined by a data set relayed through standard sensors situated on a laser-milling centre, which is a machine tool for manufacturing high-value micro-moulds, micro-dies and micro-tools. The new three-phase industrial system presented in this study is capable of identifying a model for the laser-milling process based on low-order models. The first two steps are based on the use of unsupervized connectionist models. The first step involves the analysis of the data sets that define each case study to identify if they are informative enough or if the experiments have to be performed again. In the second step, a feature selection phase is performed to determine the main variables to be processed in the third step. In this last step, the results of the study provide a model for a laser-milling procedure based on low-order models, such as black-box, in order to approximate the optimal form of the laser-milling process. The three-step model has been tested with real data obtained for three different materials: aluminium, cooper and hardened steel. These three materials are used in the manufacture of micro-moulds, micro-coolers and micro-dies, high-value tools for the medical and automotive industries among others. As the model inputs are standard data provided by the laser-milling centre, the industrial implementation of the model is immediate. Thus, this study demonstrates how a high precision industrial process can be improved using a combination of artificial intelligence and identification techniques
    • …
    corecore