2,561 research outputs found

    Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle

    Get PDF
    To restore functional use of paralyzed muscles by automatically controlled stimulation, an accurate quantitative model of the stimulated muscles is desirable. The most commonly used model for isometric muscle has had a Hammerstein structure, in which a linear dynamic block is preceded by a static nonlinear function, To investigate the accuracy of the Hammerstein model, the responses to a pseudo-random binary sequence (PRBS) excitation of normal human plantarflexors, stimulated with surface electrodes, were used to identify a Hammerstein model but also four local models which describe the responses to small signals at different mean levels of activation. Comparison of the local models with the Linearized Hammerstein model showed that the Hammerstein model concealed a fivefold variation in the speed of response. Also, the small-signal gain of the Hammerstein model was in error by factors up to three. We conclude that, despite the past widespread use of the Hammerstein model, it is not an accurate representation of isometric muscle. On the other hand, local models, which are more accurate predictors, can be identified from the responses to short PRBS sequences. The utility of local models for controller design is discussed

    Nonlinear system modeling based on constrained Volterra series estimates

    Full text link
    A simple nonlinear system modeling algorithm designed to work with limited \emph{a priori }knowledge and short data records, is examined. It creates an empirical Volterra series-based model of a system using an lql_{q}-constrained least squares algorithm with q1q\geq 1. If the system m()m\left( \cdot \right) is a continuous and bounded map with a finite memory no longer than some known τ\tau, then (for a DD parameter model and for a number of measurements NN) the difference between the resulting model of the system and the best possible theoretical one is guaranteed to be of order N1lnD\sqrt{N^{-1}\ln D}, even for DND\geq N. The performance of models obtained for q=1,1.5q=1,1.5 and 22 is tested on the Wiener-Hammerstein benchmark system. The results suggest that the models obtained for q>1q>1 are better suited to characterize the nature of the system, while the sparse solutions obtained for q=1q=1 yield smaller error values in terms of input-output behavior

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    B-spline neural networks based PID controller for Hammerstein systems

    Get PDF
    A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multi-step ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches

    Regularized Nonparametric Volterra Kernel Estimation

    Full text link
    In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modelled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Nonlinear structural damage detection based on cascade of Hammerstein models

    Get PDF
    Structural damages can result in nonlinear dynamical signatures that can significantly enhance their detection. An original nonlinear damage detection approach is proposed that is based on a cascade of Hammerstein models representation of the structure. This model is estimated by means of the Exponential Sine Sweep Method from only one measurement. On the basis of this estimated model, the linear and nonlinear parts of the output are estimated, and two damage indexes (DIs) are proposed. The first DI is built as the ratio of the energy contained in the nonlinear part of an output versus the energy contained in its linear part. The second DI is the angle between the subspaces obtained from the nonlinear parts of two set of outputs after a principal component analysis. The sensitivity of the proposed DIs to the presence of damages as well as their robustness to noise are assessed numerically on spring-mass-damper structures and experimentally on actual composite plates with surface-mounted PZT-elements. Results demonstrate the effectiveness of the proposed method to detect a damage in nonlinear structures and in the presence of noise
    corecore