16,545 research outputs found

    Open strings in Lie groups and associative products

    Get PDF
    Firstly, we generalize a semi-classical limit of open strings on D-branes in group manifolds. The limit gives rise to rigid open strings, whose dynamics can efficiently be described in terms of a matrix algebra. Alternatively, the dynamics is coded in group theory coefficients whose properties are translated in a diagrammatical language. In the case of compact groups, it is a simplified version of rational boundary conformal field theories, while for non-compact groups, the construction gives rise to new associative products. Secondly, we argue that the intuitive formalism that we provide for the semi-classical limit, extends to the case of quantum groups. The associative product we construct in this way is directly related to the boundary vertex operator algebra of open strings on symmetry preserving branes in WZW models, and generalizations thereof, e.g. to non-compact groups. We treat the groups SU(2) and SL(2,R) explicitly. We also discuss the precise relation of the semi-classical open string dynamics to Berezin quantization and to star product theory.Comment: 47 pages, 14 figure

    An isogeometric finite element formulation for phase transitions on deforming surfaces

    Get PDF
    This paper presents a general theory and isogeometric finite element implementation for studying mass conserving phase transitions on deforming surfaces. The mathematical problem is governed by two coupled fourth-order nonlinear partial differential equations (PDEs) that live on an evolving two-dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the surface deformation, the PDE is the (vector-valued) Kirchhoff-Love thin shell equation. Both PDEs can be efficiently discretized using C1C^1-continuous interpolations without derivative degrees-of-freedom (dofs). Structured NURBS and unstructured spline spaces with pointwise C1C^1-continuity are utilized for these interpolations. The resulting finite element formulation is discretized in time by the generalized-α\alpha scheme with adaptive time-stepping, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulation to admit general surface shapes and deformations. The behavior of the coupled system is illustrated by several numerical examples exhibiting phase transitions on deforming spheres, tori and double-tori.Comment: fixed typos, extended literature review, added clarifying notes to the text, added supplementary movie file
    • …
    corecore