110 research outputs found

    Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique

    Get PDF
    Differential Interferometric Synthetic Aperture Radar (DInSAR) can be considered as an efficient and cost effective technique for monitoring land subsidence due to its large spatial coverage and high accuracy provided. The recent commissioning of the first Sentinel-1 satellite offers improved support to operational surveys using DInSAR due to regular observations from a wide-area product. In this paper we show the results of an intermittent small-baseline subset (ISBAS) time-series analysis of 18 Interferometric Wide swath (IW) products of a 39,000 km2 area of Mexico acquired between 3 October 2014 and 7 May 2015 using the Terrain Observation with Progressive Scans in azimuth (TOPS) imaging mode. The ISBAS processing was based upon the analysis of 143 small-baseline differential interferograms. After the debursting, merging and deramping steps necessary to process Sentinel-1 IW roducts, the method followed a standard approach to the DInSAR analysis. The Sentinel-1 ISBAS results confirm the magnitude and extent of the deformation that was observed in Mexico City, Chalco, Ciudad Nezahualcóyotl and Iztapalapa by other C-band and L-band DInSAR studies during the 1990s and 2000s. Subsidence velocities from the Sentinel-1 analysis are, in places, in excess of -24 cm/year along the satellite line-of-sight, equivalent to over ~-40 cm/year vertical rates. This paper demonstrates the potential of Sentinel-1 IW TOPS imagery to support wide-area DInSAR surveys over what is a very large and diverse area in terms of land cover and topography

    Application of Differential and Polarimetric Synthetic Aperture Radar (SAR) Interferometry for Studying Natural Hazards

    Get PDF
    In the following work, I address the problem of coherence loss in standard Differential Interferometric SAR (DInSAR) processing, which can result in incomplete or poor quality deformation measurements in some areas. I incorporate polarimetric information with DInSAR in a technique called Polarimetric SAR Interferometry (PolInSAR) in order to acquire more accurate and detailed maps of surface deformation. In Chapter 2, I present a standard DInSAR study of the Ahar double earthquakes (Mw=6.4 and 6.2) which occurred in northwest Iran, August 11, 2012. The DInSAR coseismic deformation map was affected by decorrelation noise. Despite this, I employed an advanced inversion technique, in combination with a Coulomb stress analysis, to find the geometry and the slip distribution on the ruptured fault plane. The analysis shows that the two earthquakes most likely occurred on a single fault, not on conjugate fault planes. This further implies that the minor strike-slip faults play more significant role in accommodating convergence stress accumulation in the northwest part of Iran. Chapter 3 presents results from the application of PolInSAR coherence optimization on quad-pol RADARSAT-2 images. The optimized solution results in the identification of a larger number of reliable measurement points, which otherwise are not recognized by the standard DInSAR technique. I further assess the quality of the optimized interferometric phase, which demonstrates an increased phase quality with respect to those phases recovered by applying standard DInSAR alone. Chapter 4 discusses results from the application of PolInSAR coherence optimization from different geometries to the study of creep on the Hayward fault and landslide motions near Berkeley, CA. The results show that the deformation rates resolved by PolInSAR are in agreement with those of standard DInSAR. I also infer that there is potential motion on a secondary fault, northeast and parallel to the Hayward fault, which may be creeping with a lower velocity

    Time Series Analysis of Surface Deformation Associated With Fluid Injection and Induced Seismicity in Timpson, Texas Using DInSAR Methods

    Get PDF
    In recent years, a rise in unconventional oil and gas production in North America has been linked to an increase in seismicity rate in these regions (Ellsworth, 2013). As fluid is pumped into deep formations, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. Therefore, hydraulic fracturing and/or fluid disposal injection can significantly increase the seismic hazard to communities and structures surrounding the injection sites (Barnhart et al., 2014). On 17th May 2012 an Mw4.8 earthquake occurred near Timpson, TX and has been linked with wastewater injection operations in the area (Shirzaei et al., 2016). This study aims to spatiotemporally relate, wastewater injection operations to seismicity near Timpson using differential interferometric synthetic aperture radar (DInSAR) analysis. Results are presented as a set of time series, produced using the Multidimensional Small Baseline Subset (MSBAS) InSAR technique, revealing two-dimensional surface deformation

    Assessing the accuracy of ALOS/PALSAR-2 and Sentinel-1 radar images in estimating the land subsidence of coastal areas: a case study in Alexandria city, Egypt

    Get PDF
    Recently, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique is widely used for quantifying the land surface deformation, which is very important to assess the potential impact on social and economic activities. Radar satellites operate in different wavelengths and each provides different levels of vertical displacement accuracy. In this study, the accuracies of Sentinel-1 (C-band) and ALOS/PALSAR-2 (L-band) were investigated in terms of estimating the land subsidence rate along the study area of Alexandria City, Egypt. A total of nine Sentinel-1 and 11 ALOS/PALSAR-2 scenes were used for such assessment. The small baseline subset (SBAS) processing scheme, which detects the land deformation with a high spatial and temporal coverage, was performed. The results show that the threshold coherence values of the generated interferograms from ALOS-2 data are highly concentrated between 0.2 and 0.3, while a higher threshold value of 0.4 shows no coherent pixels for about 80% of Alexandria’s urban area. However, the coherence values of Sentinel-1 interferograms ranged between 0.3 and 1, with most of the urban area in Alexandria showing coherent pixels at a 0.4 value. In addition, both data types produced different residual topography values of almost 0 m with a standard deviation of 13.5 m for Sentinel-1 and −20.5 m with a standard deviation of 33.24 m for ALOS-2 using the same digital elevation model (DEM) and wavelet number. Consequently, the final deformation was estimated using high coherent pixels with a threshold of 0.4 for Sentinel-1, which is comparable to a threshold of about 0.8 when using ALOS-2 data. The cumulative vertical displacement along the study area from 2017 to 2020 reached −60 mm with an average of −12.5 mm and mean displacement rate of −1.73 mm/year. Accordingly, the Alexandrian coastal plain and city center are found to be relatively stable, with land subsidence rates ranging from 0 to −5 mm/year. The maximum subsidence rate reached −20 mm/year and was found along the boundary of Mariout Lakes and former Abu Qir Lagoon. Finally, the affected buildings recorded during the field survey were plotted on the final land subsidence maps and show high consistency with the DInSAR results. For future developmental urban plans in Alexandria City, it is recommended to expand towards the western desert fringes instead of the south where the present-day ground lies on top of the former wetland areas.Published versio

    Modelling co- and post-seismic displacements revealed by InSAR, and their implications for fault behaviour

    Get PDF
    The ultimate goal of seismology is to estimate the timing, magnitude and potential spatial extent of future seismic events along pre-existing faults. Based on the rate-state friction law, several theoretical physical earthquake models have been proposed towards this goal. Tectonic loading rate and frictional properties of faults are required in these models. Modern geodetic observations, e.g. GPS and InSAR, have provided unprecedented near-field observations following large earthquakes. In theory, according to the frictional rate and state asperity earthquake model, velocity-weakening regions holding seismic motions on faults should be separated with velocity-strengthening regions within which faults slip only aseismically. However, early afterslip following the 2011 MW 9.1 Tohoku-Oki earthquake revealed from GPS measurements was largely overlaid on the historical rupture zones, which challenged the velocity weakening asperity model. Therefore, the performance of the laboratory based friction law in the natural events needs further investigation, and the factors that may affect the estimates of slip models through geodetic modelling should also be discussed systematically. In this thesis, several moderate-strong events were investigated in order to address this important issue. The best-fit co- and post-seismic slip models following the 2009 MW 6.3 Haixi, Qinghai thrust-slip earthquake determined by InSAR deformation time-series suggest that the maximum afterslip is concentrated in the same area as the coseismic slip model, which is similar to the patterns observed in the 2011 Japan earthquake. In this case, complex geometric asperity may play a vital role in the coseismic nucleation and postseismic faulting. The major early afterslip after the 2011 MW 7.1 Van mainshock, which was revealed by one COSMO-SkyMed postseismic interferogram, is found just above the coseismic slip pattern. In this event, a postseismic modelling that did not allow slip across the coseismic asperity was also tested, suggesting that the slip model without slip in the asperities can explain the postseismic observations as well as the afterslip model without constraints on slip in the asperities. In the 2011 MW 9.1 Tohoku-Oki earthquake, a joint inversion with the GRACE coseismic gravity changes and inland coseismic GPS observations was conducted to re-investigate the coseismic slip model of the mainshock. A comparison of slip models from these different datasets suggests that significant variations of slip models can be observed, particularly the locations of the maximum slips. The joint slip model shows that the maximum slip of ~42 m appears near the seafloor surface close to the Japan Trench. Meanwhile, the accumulative afterslip patterns (slip >2 m) determined in previous studies appear in spatial correlation with the Coulomb stress changes generated using the joint slip model. As a strike-slip faulting event, the 2011 MW 6.8 Yushu earthquake was also investigated through co- and post-seismic modelling with more SAR data than was used in previous study. Best slip models suggest that the major afterslip is concentrated in shallow parts of the faults and between the two major coseismic slip patterns, suggesting that the performance of the rate and state frictional asperity model is appropriate in this event. Other postseismic physical mechanisms, pore-elastic rebound and viscoelastic relaxation have also been examined, which cannot significantly affect the estimate of the shallow afterslip model in this study. It is believed that the shallow afterslip predominantly controlled the postseismic behaviour after the mainshock in this case. In comparison to another 21 earthquakes investigated using geodetic data from other studies, complementary spatial extents between co- and post-seismic slip models can be identified. The 2009 MW 6.3 Qinghai earthquake is an exceptional case, in which the faulting behaviours might be dominated by the fault structure (e.g. fault bending). In conclusion, the major contributions from this thesis include: 1) the friction law gives a first order fit in most of natural events examined in this thesis; 2) geometric asperities may play an important role in faulting during earthquake cycles; 3) significant uncertainties in co- and post-seismic slip models can appreciably bias the estimation of fault frictional properties; 4) new insights derived from each earthquake regarding their fault structures and complex faulting behaviours have been observed in this thesis; and (5) a novel package for geodetic earthquake modelling has been developed, which can handle multiple datasets including InSAR, GPS and land/space based gravity changes

    Monitoring von Hangbewegungen mit InSAR Techniken im Gebiet Ciloto, Indonesien

    Get PDF
    In this doctoral thesis, the InSAR techniques are applied to detect the ground movement phenomenon and to assess the InSAR result geometrically in the Ciloto area, Indonesia. Mainly, one of those techniques, the SB-SDFP algorithm, overcomes the limitations of conventional InSAR in monitoring rural and agricultural areas and can observe extremely slow landslides. The InSAR strategy is positively known as a promising option to detect and quantify the kinematics of active landslides on a large areal scale. To minimize the bias of the InSAR displacement result, the correction of the tropospheric phase delay was carried out in a first step. This procedure is demonstrated in experiments both in the small study area in Ciloto and in a larger area. The latter is an area located in Northern Baja California, Mexico and is dominated by tectonic activity as well as groundwater-induced subsidence. A detailed investigation of the slope movement's behavior in the Ciloto district was conducted utilizing multi-temporal and multi-band SAR data from ERS1/2 (1996-1999), ALOS PALSAR (2007-2009) and Sentinel-1 (2014-2018) satellites. The region was successfully identified as a permanent active landslide prone area, especially in the vicinity of the Puncak Pass and Puncak Highway. The full 3D velocity field and the displacement time series were estimated using the inversion model. The velocity rate was classified from extremely slow to slow movement. To comprehend the landslide's behavior, a further examination of the relationship between InSAR results and physical characteristics of the area was carried out. For the long period of a slow-moving landslide, the relationship between precipitation and displacement trend shows a weak correlation. It is concluded that the extremely slow to slow deformation is not directly influenced by the rainfall intensity, yet it effectuates the subsurface and the groundwater flow. The run-off process with rainfall exceeding a soil's infiltration capacity was suspected as the main driver of the slow ground movement phenomenon. However, when analyzing rapid and extremely rapid landslide events at Puncak Pass, a significant increase in the correlation coefficient between precipitation and displacement rate could be observed.In dieser Doktorarbeit wird die Anwendung von erweiterten Verarbeitungsstrategien von InSAR Daten zur Erkennung und geometrischen Bewertung der Bodenbewegungen im Ciloto - Indonesien dargestellt. Dieser Ansatz überwindet die Beschränkungen konventioneller SAR-Interferometrie und ermöglicht sowohl ein kontinuierliches Monitoring dieses landwirtschaftich geprägten Gebietes als auch die Erfassung extrem langsamer Hangrutschungen. Um eine Verzerrung der InSAR Deformationsergebnisse zu minimieren, wurde zunächst eine Korrektur der troposphärischen Phase durchgeführt. Diese neuartige Strategie wird sowohl im Forschungsgebiet Ciloto als auch an einem größeren Gebiet demonstriert. Bei letzterem handelt es sich um einen Küstenstreifen im nördlichen Niederkalifornien, Mexiko, welcher durch hohe tektonische Aktivität und grundwasserinduzierte Landsetzungen charakterisiert ist. Die detaillierte Untersuchung des Verhaltens von Hangrutschungen im Ciloto erfolgte durch die Verarbeitung multi-temporaler SAR-Daten unter Nutzung verschiedener Frequenzbänder, darunter ESR1/2 (1996-1999), ALOS PALSAR (2007-2009) und Sentinel-1 (2014-2018) Daten. Die Region konnte erfolgreich als permanent aktives Hangrutschungsgebiet identifiziert werden, wobei der Puncak Pass und der Puncak Highway ein erhöhtes Gefahrenpotential aufweisen. Ein 3D- Geschwindig-keitsfeld der Deformation und die zugehörigen Zeitreihen wurden mit dem Inversionsmodell berechnet. Die Geschwindigkeitsrate wurde als langsam bis extrem langsam klassifiziert. Um das dynamische Verhalten der Hangrutschung zu verstehen wurde, in einer weiteren Untersuchung die Beziehung zwischen dem InSAR-Ergebnis und den physikalischen Begebenheiten im Forschungsgebiet analysiert. Es wird der Schluss gezogen, dass die langsame bis extrem langsame Verformung nicht direkt von der Niederschlagsintensität beeinflusst wird, diese sich aber auf den Untergrund und die Grundwasserströmung auswirkt. Es wird vermutet, dass der Oberflächenablauf, welcher die Infiltrationskapazität des Bodens übersteigt, ausschlaggebend für das Phänomen der langsamen Bodenbewegung ist. Für die schnellen und extrem schnellen Hangrutschungen jedoch konnte eine signifikante Erhöhung des Korrelationskoeffizienten zwischen Niederschlag und Verschiebungsrate bei Untersuchungen der Hangrutschung am Puncak-Pass nachgewiesen werden
    • …
    corecore