3,975 research outputs found

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Time-Reversal of Nonlinear Waves - Applicability and Limitations

    Get PDF
    Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.Comment: 14 pages, 17 figures ; accepted for publication in Phys. Rev. Fluid

    Source localization in random acoustic waveguides

    Get PDF
    Mode coupling due to scattering by weak random inhomogeneities in waveguides leads to loss of coherence of wave fields at long distances of propagation. This in turn leads to serious deterioration of coherent source localization methods, such as matched field. We study with analysis and numerical simulations how such deterioration occurs and introduce a novel incoherent approach for long range source localization in random waveguides. It is based on a special form of transport theory for the incoherent fluctuations of the wave field. We study theoretically the statistical stability of the method and illustrate its performance with numerical simulations. We also show how it can be used to estimate the correlation function of the random fluctuations of the wave speed
    corecore