34 research outputs found

    Time Reversal Aided Bidirectional OFDM Underwater Cooperative Communication Algorithm with the Same Frequency Transmission

    Get PDF
    In underwater acoustic channel, signal transmission may experience significant latency and attenuation that would degrade the performance of underwater communication. The cooperative communication technique can solve it but the spectrum efficiency is lower than traditional underwater communication. So we proposed a time reversal aided bidirectional OFDM underwater cooperative communication algorithm. The algorithm allows all underwater sensor nodes to share the same uplink and downlink frequency simultaneously to improve the spectrum efficiency. Since the same frequency transmission would produce larger intersymbol interference, we adopted the time reversal method to degrade the multipath interference at first; then we utilized the self-information cancelation module to remove the self-signal of OFDM block because it is known for sensor nodes. In the simulation part, we compare our proposed algorithm with the existing underwater cooperative transmission algorithms in respect of bit error ratio, transmission rate, and computation. The results show that our proposed algorithm has double spectrum efficiency under the same bit error ratio and has the higher transmission rate than the other underwater communication methods

    QoS Based Cooperative Communications and Security Mechanisms for Ad Hoc Sensor Networks

    Get PDF
    Khan, S.; Lloret, J.; Song, H.; Du, Q. (2017). QoS Based Cooperative Communications and Security Mechanisms for Ad Hoc Sensor Networks. Journal of Sensors. 1-2. https://doi.org/10.1155/2017/9768421S1

    Differential modulation for asynchronous two-way relay systems over frequency-selective fading channels

    Get PDF
    We propose two schemes for asynchronous multi-relay two-way relay (MR-TWR) systems in which neither the users nor the relays know the channel state information. In an MR-TWR system, two users exchange their messages with the help of NR relays. Most of the existing works on MR-TWR systems based on differential modulation assume perfect symbol-level synchronization between all communicating nodes. However, this assumption is not valid in many practical systems, which makes the design of differentially modulated schemes more challenging. Therefore, we design differential modulation schemes that can tolerate timing misalignment under frequency-selective fading. We investigate the performance of the proposed schemes in terms of either probability of bit error or pairwise error probability. Through numerical examples, we show that the proposed schemes outperform existing competing solutions in the literature, especially for high signal-to-noise ratio values. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore