34,214 research outputs found

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield

    Harmonized Cellular and Distributed Massive MIMO: Load Balancing and Scheduling

    Full text link
    Multi-tier networks with large-array base stations (BSs) that are able to operate in the "massive MIMO" regime are envisioned to play a key role in meeting the exploding wireless traffic demands. Operated over small cells with reciprocity-based training, massive MIMO promises large spectral efficiencies per unit area with low overheads. Also, near-optimal user-BS association and resource allocation are possible in cellular massive MIMO HetNets using simple admission control mechanisms and rudimentary BS schedulers, since scheduled user rates can be predicted a priori with massive MIMO. Reciprocity-based training naturally enables coordinated multi-point transmission (CoMP), as each uplink pilot inherently trains antenna arrays at all nearby BSs. In this paper we consider a distributed-MIMO form of CoMP, which improves cell-edge performance without requiring channel state information exchanges among cooperating BSs. We present methods for harmonized operation of distributed and cellular massive MIMO in the downlink that optimize resource allocation at a coarser time scale across the network. We also present scheduling policies at the resource block level which target approaching the optimal allocations. Simulations reveal that the proposed methods can significantly outperform the network-optimized cellular-only massive MIMO operation (i.e., operation without CoMP), especially at the cell edge

    Knowledge Discovery in the SCADA Databases Used for the Municipal Power Supply System

    Full text link
    This scientific paper delves into the problems related to the develop-ment of intellectual data analysis system that could support decision making to manage municipal power supply services. The management problems of mu-nicipal power supply system have been specified taking into consideration modern tendencies shown by new technologies that allow for an increase in the energy efficiency. The analysis findings of the system problems related to the integrated computer-aided control of the power supply for the city have been given. The consideration was given to the hierarchy-level management decom-position model. The objective task targeted at an increase in the energy effi-ciency to minimize expenditures and energy losses during the generation and transportation of energy carriers to the Consumer, the optimization of power consumption at the prescribed level of the reliability of pipelines and networks and the satisfaction of Consumers has been defined. To optimize the support of the decision making a new approach to the monitoring of engineering systems and technological processes related to the energy consumption and transporta-tion using the technologies of geospatial analysis and Knowledge Discovery in databases (KDD) has been proposed. The data acquisition for analytical prob-lems is realized in the wireless heterogeneous medium, which includes soft-touch VPN segments of ZigBee technology realizing the 6LoWPAN standard over the IEEE 802.15.4 standard and also the segments of the networks of cellu-lar communications. JBoss Application Server is used as a server-based plat-form for the operation of the tools used for the retrieval of data collected from sensor nodes, PLC and energy consumption record devices. The KDD tools are developed using Java Enterprise Edition platform and Spring and ORM Hiber-nate technologies

    Software Holography: Interferometric Data Analysis for the Challenges of Next Generation Observatories

    Full text link
    Next generation radio observatories such as the MWA, LWA, LOFAR, CARMA and SKA provide a number of challenges for interferometric data analysis. These challenges include heterogeneous arrays, direction-dependent instrumental gain, and refractive and scintillating atmospheric conditions. From the analysis perspective, this means that calibration solutions can not be described using a single complex gain per antenna. In this paper we use the optimal map-making formalism developed for CMB analyses to extend traditional interferometric radio analysis techniques--removing the assumption of a single complex gain per antenna and allowing more complete descriptions of the instrumental and atmospheric conditions. Due to the similarity with holographic mapping of radio antenna surfaces, we call this extended analysis approach software holography. The resulting analysis algorithms are computationally efficient, unbiased, and optimally sensitive. We show how software holography can be used to solve some of the challenges of next generation observations, and how more familiar analysis techniques can be derived as limiting cases.Comment: in revie

    Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Array for high performance image processing applications

    Full text link
    Coarse-Grained Reconfigurable Arrays (CGRAs) enable ease of programmability and result in low development costs. They enable the ease of use specifically in reconfigurable computing applications. The smaller cost of compilation and reduced reconfiguration overhead enables them to become attractive platforms for accelerating high-performance computing applications such as image processing. The CGRAs are ASICs and therefore, expensive to produce. However, Field Programmable Gate Arrays (FPGAs) are relatively cheaper for low volume products but they are not so easily programmable. We combine best of both worlds by implementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA) on FPGA. VCGRAs are a trade off between FPGA with large routing overheads and ASICs. In this perspective we present a novel heterogeneous Virtual Coarse-Grained Reconfigurable Array (VCGRA) called "Pixie" which is suitable for implementing high performance image processing applications. The proposed VCGRA contains generic processing elements and virtual channels that are described using the Hardware Description Language VHDL. Both elements have been optimized by using the parameterized configuration tool flow and result in a resource reduction of 24% for each processing elements and 82% for each virtual channels respectively.Comment: Presented at 3rd International Workshop on Overlay Architectures for FPGAs (OLAF 2017) arXiv:1704.0880
    • …
    corecore