7,005 research outputs found

    Energy management and shifting stability control for a novel dual input clutchless transmission system

    Full text link
    © 2019 Elsevier Ltd A dual input clutchless transmission system based on automated manual transmission (AMT) structure is developed for pure electric vehicles. An energy management strategy (EMS) is proposed to determine the power distribution between two motors and the optimal gear state. A mathematical model is built to minimize the energy consumption of the motors at each instant based on the motor efficiency maps. However, the proposed EMS in line with other energy-oriented strategies often result in excessive gear shifts and compromised drivability. To avoid the undesired gear shift, a shifting stabilizer is built in the EMS objective function to improve the shift quality. Accordingly, to achieve a balance between the energy consumption and the drivability, a multi-objective optimization method is adopted to reduce the unnecessary shift events while minimizing energy consumption. Two driving cycles representing typical daily driving conditions are used to demonstrate the effectiveness of the proposed system in terms of energy efficiency and shifting stability

    Gear shift strategies for automotive transmissions

    Get PDF
    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power demand at the vehicle wheels. Under dynamic driving conditions, the transmission is required to shift in order to match the engine power with the changing drive power. Furthermore, a gear shift decision is expected to be consistent such that vehicle can remain in the next gear for a period of time without deteriorating the acceleration capability. Therefore, an optimal conversion of the engine power plays a key role in improving the fuel economy and driveability. Moreover, the consequences of the assumptions related to the discrete state variable-dependent losses, e.g. gear shifting, clutch slippage and engine starting, and their e¿ect on the gear shift control strategy are necessary to be analyzed to yield insights into the fuel usage. The ¿rst part of the thesis deals with the design of gear shift strategies for electronically controlled discrete ratio transmissions used in both conventional vehicles and Hybrid Electric Vehicles (HEVs). For conventional vehicles, together with the fuel economy, the driveability is systematically addressed in a Dynamic Programming (DP) based optimal gear shift strategy by three methods: i) the weighted inverse of the power re¬serve, ii) the constant power reserve, and iii) the variable power reserve. In addition, a Stochastic Dynamic Programming (SDP) algorithm is utilized to optimize the gear shift strategy, subject to a stochastic distribution of the power request, in order to minimize the expected fuel consumption over an in¿nite horizon. Hence, the SDP-based gear shift strategy intrinsically respects the driveability and is realtime implementable. By per¬forming a comparative analysis of all proposed gear shift methods, it is shown that the variable power reserve method achieves the highest fuel economy without deteriorating the driveability. Moreover, for HEVs, a novel fuel-optimal control algorithm, consist-ing of the continuous power split and discrete gear shift, engine on-o¿ problems, based on a combination of DP and Pontryagin’s Minimum Principle (PMP) is developed for the corresponding hybrid dynamical system. This so-called DP-PMP gear shift control approach benchmarks the development of an online implementable control strategy in terms of the optimal tradeo¿ between calculation accuracy and computational e¿ciency. Driven by an ultimate goal of realizing an online gear shift strategy, a gear shift map design methodology for discrete ratio transmissions is developed, which is applied for both conventional vehicles and HEVs. The design methodology uses an optimal gear shift algorithm as a basis to derive the optimal gear shift patterns. Accordingly, statis¬tical theory is applied to analyze the optimal gear shift pattern in order to extract the time-invariant shift rules. This alternative two-step design procedure makes the gear shift map: i) respect the fuel economy and driveability, ii) be consistent and robust with respect to shift busyness, and iii) be realtime implementation. The design process is ¿exible and time e¿cient such that an applicability to various powertrain systems con¿gured with discrete ratio transmissions is possible. Furthermore, the study in this thesis addresses the trend of utilizing the route information in the powertrain control system by proposing an integrated predictive gear shift strategy concept, consisting of a velocity algorithm and a predictive algorithm. The velocity algorithm improves the fuel economy in simulation considerably by proposing a fuel-optimal velocity trajectory over a certain driving horizon for the vehicle to follow. The predictive algorithm suc¬cessfully utilizes a prede¿ned velocity pro¿le over a certain horizon in order to realize a fuel economy improvement very close to that of the globally optimal algorithm (DP). In the second part of the thesis, the energetic losses, involved with the gear shift and engine start events in an automated manual transmission-based HEV, are modeled. The e¿ect of these losses on the control strategies and fuel consumption for (non-)powershift transmission technologies is investigated. Regarding the gear shift loss, the study ¿rstly ever discloses a perception of a fuel-e¿cient advantage of the powershift transmissions over the non-powershift ones applied for commercial vehicles. It is also shown that the engine start loss can not be ignored in seeking for a fair evaluation of the fuel economy. Moreover, the sensitivity study of the fuel consumption with respect to the prediction horizon reveals that a predictive energy management strategy can realize the highest achievable fuel economy with a horizon of a few seconds ahead. The last part of the thesis focuses on investigating the sensitivity of an optimal gear shift strategy to the relevant control design objectives, i.e. fuel economy, driveability and comfort. A singu¬lar value decomposition based method is introduced to analyze the possible correlations and interdependencies among the design objectives. This allows that some of the pos¬sible dependent design objective(s) can be removed from the objective function of the corresponding optimal control problem, hence thereby reducing the design complexity

    Efficient Thermal Electric Skipping Strategy Applied to the Control of Series/Parallel Hybrid Powertrain

    Get PDF
    The optimal control of hybrid powertrains represents one of the most challenging tasks for the compliance with the legislation concerning CO2 and pollutant emission of vehicles. Most common off-line optimization strategies (Pontryagin minimum principle-PMP-or dynamic programming) allow to identify the optimal control along a predefined driving mission at the expense of a quite relevant computational effort. On-line strategies, suitable for on-vehicle implementation, involve a certain performance degradation depending on their degree of simplification and computational effort. In this work, a simplified control strategy is presented, where the conventional power-split logics, typical of the above-mentioned strategies, is here replaced with an alternative utilization of the thermal and electric units for the vehicle driving (Efficient Thermal Electric Skipping Strategy-ETESS). The choice between the units is realized at each time and is based on the comparison between the effective fuel rate of the thermal engine and an equivalent fuel rate related to the electrical power consumption. The equivalent fuel rate in a pure electric driving is associated to a combination of brake specific fuel consumption of the thermal engine, and electro-mechanical efficiencies along the driveline. The ETESS is applied for the simulation of segment C hybrid vehicle, equipped with a thermal engine and two electric units (motor and generator). The methodology is tested along regulatory driving cycles (WLTP, Artemis) and RDE, with different powertrain variants. Numerical results underline that the proposed approach performs very close to most common control strategies (consumed fuel per kilometer higher than PMP of about 1% on average). The main advantage is a reduced computational effort (decrease of 99% on average). The ETESS is straightforwardly adapted for an on-line implementation, through the introduction of an adaptative factor, preserving the computational effort and the fuel economy

    Energy management of hybrid and battery electric vehicles

    Get PDF
    This work focuses on improving the fuel economy of parallel Hybrid Electric Vehicles (HEVs) and dual-motor Electric Vehicles (EVs) through energy management strategies. Both vehicle models have two propulsion branches, each powering a separate axle: An engine and an electric motor in the HEV and two electric motors in the EV. This similarity in the vehicle models emphasises the need for similar energy management solutions. In Part Energy Management of HEVs of this thesis, a high-fidelity parallel Through-The-Road (TTR) HEV model is developed to study and test conventional control strategies. The traditional control strategies serve as a guide for developing novel heuristic control strategies. The Equivalent Consumption Minimisation Strategy (ECMS) is an optimisation-based control strategy used as the benchmark in this part of the work. A family of rule-based energy management strategies is proposed for parallel HEVs, including the Torque-levelling Threshold-changing Strategy (TTS) and its simplified version, the Simplified Torque-levelling Threshold-changing Strategy (STTS). The TTS applies a concept of torque-levelling, which ensures the engine works efficiently by operating with a constant torque as the load demand crosses a certain threshold, unlike the load-following approach commonly used. However, the TTS requires finely tuned constant torque and threshold parameters, making it unsuitable for real-time applications. To address this, two feedback-like updating laws are incorporated into the TTS to determine the constant torque and threshold online for real-time applications. Real-time versions of these strategies, Real-time Torque-levelling Threshold-changing Strategy (RTTS) and Real-time Simplified Torque-levelling Threshold-changing Strategy (RSTTS) are developed using a novel Driving Pattern Recognition (DPR) algorithm. The effectiveness of the RTTS is demonstrated by implementing it on a high-fidelity parallel hybrid passenger car and benchmarking it against ECMS. In Part Energy Management of EVs of the thesis, a low-fidelity model of a novel EV powertrain with two electric propulsion systems, one at each axle, has been developed to study and test its energy management with one of the main conventional optimal control methods, Dynamic Programming (DP). The EV model uses two differently sized traction motors at the front and rear axles. The thermal dynamics of the utilised Permanent Magnet Synchronous Motors (PMSMs) are studied. DP is first implemented onto the Baseline model that does not include any PMSM thermal dynamics, referred to as the Baseline DP, which acts as a benchmark since it is the conventional case. The thermal dynamics of the traction motors are then introduced in the second DP problem formulation, referred to as the Thermal DP, which is compared against the Baseline DP to evaluate the possible benefits of energy efficiency by the more informed energy management optimisation formulation. The best method is chosen to include these thermal dynamics in the overall energy management control strategy without significantly compromising computational time.Open Acces

    On optimal mission planning for conventional and electric heavy duty vehicles

    Get PDF
    Ever-growing energy consumption and CO2 emissions due to the increase in road transport are major challenges that attract international attention, especially policy makers, logistic service providers and customers considering environmental, ecological and economic issues. Other negative side-effects caused by the growth of the road transport are the extensive economic and social costs because of traffic congestion. Thus, there is a strong motivation to investigate possible ways of improving transport efficiency aiming at achieving a sustainable transport, e.g. by finding the best compromise between resource consumption and logistics performance. The transport efficiency can be improved by optimal planning of the transport mission, which can be interpreted as optimising mission start and/or finish time, and velocity profile of the driving vehicle. This thesis proposes a bi-layer mission planner for long look-ahead horizons stretched up to hundreds of kilometers. The mission planner consists of logistics planner as its top level and eco-driving supervisor as its bottom level. The logistics planner aims at optimising the mission start and/or finish time by optimising energy consumption and travel time, subject to road and traffic information, e.g. legal and dynamic speed limits. The eco-driving supervisor computes the velocity profile of the driving vehicle by optimising the energy consumption and penalising driver discomfort. To do so, an online-capable algorithm has been formulated in MPC framework, subject to road and traffic information, and the pre-optimised mission start and/or finish time. This algorithm is computationally efficient and enables the driving vehicle to adapt and optimally respond to predicted disturbances within a short amount of time. The mission planner has been applied to conventional and fully-electric powertrains. It is observed that total travel timeis reduced up to 5.5 % by optimising the mission start time, when keeping anaverage cruising speed of about 75 km/h. Also, compared to standard cruise control, the energy savings of using this algorithm is up to 11.6 %

    Component Optimization of a Parallel P4 Hybrid Electric Vehicle Utilizing an Equivalent Consumption Minimization Strategy

    Get PDF
    Advancements in battery and electric motor technology have driven the development of hybrid electric vehicles to improve fuel economy. Hybrid electric vehicles can utilize an internal combustion engine and an electric motor in many configurations, requiring the development of advanced energy management strategies for a range of component configurations. The Equivalent Consumption Minimization Strategy (ECMS) is an advanced energy management strategy that can be calculated in-vehicle in real-time operation. This energy management strategy uses an equivalence factor to equate electrical to mechanical power when performing the torque split determination between the internal combustion engine and electric motor. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimized fuel economy results, while maintaining a target state of charge of the battery. The goal of this work is to analyze how the algorithm operates with the WVU Chevy Blazer to find an optimal equivalence factor that can maintain a strict charge sustaining window of operation for the high voltage battery, while improving the fuel economy based on dynamic programing results calculated for this vehicle architecture. Different electric motor sizes are then explored by changing the max torque and max power to analyze how the equivalence factor changes to operate the ECMS algorithm. This research mainly focused on utilizing both the UDDS drive cycle and HwFET drive cycle to determine the effectiveness of the ECMS algorithm. The results show that as the max torque and max power of the electric motor increased, the equivalence factor found for the UDDS drive cycle and the HwFET drive cycle converged to similar value. The convergence of the equivalence factor allowed the ECMS algorithm to better maintain the target state of charge of the battery while maintaining the fuel economy and improving the fuel economy for the UDDS drive cycle and HwFET drive cycle, respectively

    Modeling and Optimization of a Plug-in hybrid electric vehicle

    Get PDF
    Today, the world is faced with a situation where new technologies have to be developed to decrease the dependence on natural non-renewable resources. Each day, as the demand for non-renewable resources increases, it puts great pressure on the scientific fraternity to develop new technologies that are aimed at reducing this dependence. Today\u27s road traffic plays a major part in the energy consumption worldwide. Hence it is imperative that we develop environmentally friendly solutions to this problem that arises in the transportation sector. Hybrid vehicle is one of the alternatives that can be seen as a viable solution to this energy crisis. The recent strides in the field of controls and optimization has led to the evolution of new control and optimization tools to target several simultaneous objectives in a plug-in hybrid electric vehicle. The control strategies primarily target the minimization of fuel consumption, while meeting the power demand and also enhancing the drivability. The present work deals with the backward and forward modeling of a Power Split Plug-in Hybrid electric Vehicle. The Power-split plug-in hybrid electric vehicle is a combination of both series and parallel hybrid electric vehicles. A power split hybrid derives its name from the power split device namely the planetary gear set. The planetary gear set splits the engine power, allowing for both series and parallel modes. The model developed incorporates the fuel consumption minimization principle viz. Equivalent Consumption Minimization Principle(ECMS). ECMS principle deals with assigning future fuel costs and savings to the actual usage of electrical energy. Thus, the present usage of electrical energy would mean that this energy has to be balanced by replenishment in terms of future fuel costs and the present usage of fuel for replenishment would be associated with future savings as this energy is available at a lower cost. The ECMS principle used for optimization provided the necessary minimization by maintaining the State of Charge of Renewable Electrical Storage System(RESS) within the prescribed limits. When properly designed by appropriately tuning the Charging and Discharging coefficients in the minimization strategy, we can optimize the vehicle performance over a given cycle, with the generation of power being intact and perhaps more to conform to the best emission standards in any part of the world

    Optimal Velocity and Power Split Control of Hybrid Electric Vehicles

    Get PDF
    An assessment study of a novel approach is presented that combines discrete state-space Dynamic Programming and Pontryagin’s Maximum Principle for online optimal control of hybrid electric vehicles (HEV). In addition to electric energy storage and gear, kinetic energy and travel time are considered states in this paper. After presenting the corresponding model using a parallel HEV as an example, a benchmark method with Dynamic Programming is introduced which is used to show the solution quality of the novel approach. It is illustrated that the proposed method yields a close-to-optimal solution by solving the optimal control problem over one hundred thousand times faster than the benchmark method. Finally, a potential online usage is assessed by comparing solution quality and calculation time with regard to the quantization of the state space
    corecore