931 research outputs found

    Time Localization and Capacity of Faster-Than-Nyquist Signaling

    Full text link
    In this paper, we consider communication over the bandwidth limited analog white Gaussian noise channel using non-orthogonal pulses. In particular, we consider non-orthogonal transmission by signaling samples at a rate higher than the Nyquist rate. Using the faster-than-Nyquist (FTN) framework, Mazo showed that one may transmit symbols carried by sinc pulses at a higher rate than that dictated by Nyquist without loosing bit error rate. However, as we will show in this paper, such pulses are not necessarily well localized in time. In fact, assuming that signals in the FTN framework are well localized in time, one can construct a signaling scheme that violates the Shannon capacity bound. We also show directly that FTN signals are in general not well localized in time. Therefore, the results of Mazo do not imply that one can transmit more data per time unit without degrading performance in terms of error probability. We also consider FTN signaling in the case of pulses that are different from the sinc pulses. We show that one can use a precoding scheme of low complexity to remove the inter-symbol interference. This leads to the possibility of increasing the number of transmitted samples per time unit and compensate for spectral inefficiency due to signaling at the Nyquist rate of the non sinc pulses. We demonstrate the power of the precoding scheme by simulations

    Optical Camera Communications: Principles, Modulations, Potential and Challenges

    Get PDF
    Optical wireless communications (OWC) are emerging as cost-effective and practical solutions to the congested radio frequency-based wireless technologies. As part of OWC, optical camera communications (OCC) have become very attractive, considering recent developments in cameras and the use of fitted cameras in smart devices. OCC together with visible light communications (VLC) is considered within the framework of the IEEE 802.15.7m standardization. OCCs based on both organic and inorganic light sources as well as cameras are being considered for low-rate transmissions and localization in indoor as well as outdoor short-range applications and within the framework of the IEEE 802.15.7m standardization together with VLC. This paper introduces the underlying principles of OCC and gives a comprehensive overview of this emerging technology with recent standardization activities in OCC. It also outlines the key technical issues such as mobility, coverage, interference, performance enhancement, etc. Future research directions and open issues are also presented

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    corecore