1,847 research outputs found

    A color hand gesture database for evaluating and improving algorithms on hand gesture and posture recognition

    Get PDF
    With the increase of research activities in vision-based hand posture and gesture recognition, new methods and algorithms are being developed. Although less attention is being paid to developing a standard platform for this purpose. Developing a database of hand gesture images is a necessary first step for standardizing the research on hand gesture recognition. For this purpose, we have developed an image database of hand posture and gesture images. The database contains hand images in different lighting conditions and collected using a digital camera. Details of the automatic segmentation and clipping of the hands are also discussed in this paper

    Recognition of human body posture from a cloud of 3D data points using wavelet transform coefficients

    Get PDF
    Addresses the problem of recognizing a human body posture from a cloud of 3D points acquired by a human body scanner. Motivated by finding a representation that embodies a high discriminatory power between posture classes, a new type of feature is suggested, namely the wavelet transform coefficients (WTC) of the 3D data-point distribution projected on to the space of spherical harmonics. A feature selection technique is developed to find those features with high discriminatory power. Integrated within a Bayesian classification framework and compared with other standard features, the WTC showed great capability in discriminating between close postures. The qualities of the WTC features were also reflected in the experimental results carried out with artificially generated postures, where the WTC obtained the best classification rat

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Human gesture classification by brute-force machine learning for exergaming in physiotherapy

    Get PDF
    In this paper, a novel approach for human gesture classification on skeletal data is proposed for the application of exergaming in physiotherapy. Unlike existing methods, we propose to use a general classifier like Random Forests to recognize dynamic gestures. The temporal dimension is handled afterwards by majority voting in a sliding window over the consecutive predictions of the classifier. The gestures can have partially similar postures, such that the classifier will decide on the dissimilar postures. This brute-force classification strategy is permitted, because dynamic human gestures show sufficient dissimilar postures. Online continuous human gesture recognition can classify dynamic gestures in an early stage, which is a crucial advantage when controlling a game by automatic gesture recognition. Also, ground truth can be easily obtained, since all postures in a gesture get the same label, without any discretization into consecutive postures. This way, new gestures can be easily added, which is advantageous in adaptive game development. We evaluate our strategy by a leave-one-subject-out cross-validation on a self-captured stealth game gesture dataset and the publicly available Microsoft Research Cambridge-12 Kinect (MSRC-12) dataset. On the first dataset we achieve an excellent accuracy rate of 96.72%. Furthermore, we show that Random Forests perform better than Support Vector Machines. On the second dataset we achieve an accuracy rate of 98.37%, which is on average 3.57% better then existing methods

    Review of constraints on vision-based gesture recognition for human–computer interaction

    Get PDF
    The ability of computers to recognise hand gestures visually is essential for progress in human-computer interaction. Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recognition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations but also because of the complex non-rigid properties of the hand. This study surveys major constraints on vision-based gesture recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges are explored in detail

    Time-delay neural network for continuous emotional dimension prediction from facial expression sequences

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Automatic continuous affective state prediction from naturalistic facial expression is a very challenging research topic but very important in human-computer interaction. One of the main challenges is modeling the dynamics that characterize naturalistic expressions. In this paper, a novel two-stage automatic system is proposed to continuously predict affective dimension values from facial expression videos. In the first stage, traditional regression methods are used to classify each individual video frame, while in the second stage, a Time-Delay Neural Network (TDNN) is proposed to model the temporal relationships between consecutive predictions. The two-stage approach separates the emotional state dynamics modeling from an individual emotional state prediction step based on input features. In doing so, the temporal information used by the TDNN is not biased by the high variability between features of consecutive frames and allows the network to more easily exploit the slow changing dynamics between emotional states. The system was fully tested and evaluated on three different facial expression video datasets. Our experimental results demonstrate that the use of a two-stage approach combined with the TDNN to take into account previously classified frames significantly improves the overall performance of continuous emotional state estimation in naturalistic facial expressions. The proposed approach has won the affect recognition sub-challenge of the third international Audio/Visual Emotion Recognition Challenge (AVEC2013)1

    Early Turn-taking Prediction with Spiking Neural Networks for Human Robot Collaboration

    Full text link
    Turn-taking is essential to the structure of human teamwork. Humans are typically aware of team members' intention to keep or relinquish their turn before a turn switch, where the responsibility of working on a shared task is shifted. Future co-robots are also expected to provide such competence. To that end, this paper proposes the Cognitive Turn-taking Model (CTTM), which leverages cognitive models (i.e., Spiking Neural Network) to achieve early turn-taking prediction. The CTTM framework can process multimodal human communication cues (both implicit and explicit) and predict human turn-taking intentions in an early stage. The proposed framework is tested on a simulated surgical procedure, where a robotic scrub nurse predicts the surgeon's turn-taking intention. It was found that the proposed CTTM framework outperforms the state-of-the-art turn-taking prediction algorithms by a large margin. It also outperforms humans when presented with partial observations of communication cues (i.e., less than 40% of full actions). This early prediction capability enables robots to initiate turn-taking actions at an early stage, which facilitates collaboration and increases overall efficiency.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    GUI system for Elders/Patients in Intensive Care

    Full text link
    In the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. Also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. This is costly in terms of money and man power. A person is needed for 24x7 care of these people. To help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. This will reduce the need of man power, also a continuous monitoring would not be needed. The system is using MS Kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. The system provides GUI for simple usage and gives visual and audio feedback to user. This system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip.Comment: In proceedings of the 4th IEEE International Conference on International Technology Management Conference, Chicago, IL USA, 12-15 June, 201

    A comparative study of different image features for hand gesture machine learning

    Get PDF
    Vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition. Hand gesture recognition for human computer interaction is an area of active research in computer vision and machine learning. The primary goal of gesture recognition research is to create a system, which can identify specific human gestures and use them to convey information or for device control. In this paper we present a comparative study of seven different algorithms for hand feature extraction, for static hand gesture classification, analysed with RapidMiner in order to find the best learner. We defined our own gesture vocabulary, with 10 gestures, and we have recorded videos from 20 persons performing the gestures for later processing. Our goal in the present study is to learn features that, isolated, respond better in various situations in human-computer interaction. Results show that the radial signature and the centroid distance are the features that when used separately obtain better results, being at the same time simple in terms of computational complexity.(undefined
    • …
    corecore