1,615 research outputs found

    Three-Dimensional Smoothed Particle Hydrodynamics Method for Simulating Free Surface Flows

    Get PDF
    In this paper, we applied an improved Smoothing Particle Hydrodynamics (SPH) method by using gradient kernel renormalization in three-dimensional cases. The purpose of gradient kernel renormalization is to improve the accuracy of numerical simulation by improving gradient kernel approximation. This method is implemented for simulating free surface flows, in particular dam break case with rigid ball structures and the propagation of waves towards a slope in a rectangular tank.Comment: 9 pages, 5 figures, Selected Paper from the International Symposium on Computational Science 201

    A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows

    Get PDF
    A quantitative comparison of the usual and recent numerical treatments which are applied to the Smoothed Particle Hydrodynamics (SPH) method are presented together with a new free-surface treatment. A series of numerical treatments are studied to refine the numerical procedures of the SPH method particularly for violent flows with a free surface. Two dimensional dam-break and sway-sloshing problems in a tank are modeled by solving Euler's equation of motion utilizing weakly compressible SPH method (WCSPH). Initially, the dam-break benchmark problem is studied by adopting only conventional basic equations of SPH without any numerical remedy and then by considering numerical treatments of interest one after another. In the WCSPH method, the precise calculation of the densities of the particles is vital for the solution, accordingly a density correction algorithm is presented as a basic numerical treatment. Subsequently, Monaghan's (1994) [1] XSPH velocity variant algorithm, artificial particle displacement (APD) algorithm (Shaldoo et al., 2011) [2], and a hybrid combination of velocity updated XSPH (VXSPH) and APD algorithms are implemented separately, but all with the density correction algorithm as a default treatment. The effects of each of these treatments on the pressure and on the free surface profiles are analyzed by comparing our numerical findings with experimental and numerical results in the literature. After the detailed scrutiny on the dam-break problem, sway-sloshing problem is handled with the VXSPH+APD algorithm which has been noted to provide the most reliable and accurate results in the dam-break problem. For the sway-sloshing problem, the time histories of free surface elevations on the left side wall of the rectangular tank are compared with experimental and numerical results available in the literature. It was shown that the VXSPH+APD treatment significantly improves the accuracy of the numerical simulations for violent flows with a free surface and lead to the results which are in very good agreement with experimental and numerical findings of literature in terms of both the kinematic and the dynamic point of view

    Smoothed Particle Hydrodynamics and Magnetohydrodynamics

    Full text link
    This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several `urban myths' regarding SPH, in particular the idea that one can simply increase the `neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.Comment: 44 pages, 14 figures, accepted to special edition of J. Comp. Phys. on "Computational Plasma Physics". The ndspmhd code is available for download from http://users.monash.edu.au/~dprice/ndspmhd

    Smoothed Particle Hydrodynamics for Computational Fluid Dynamics

    Get PDF
    Smoothed particle hydrodynamics (SPH) is a simple and effective numerical method that can be used to solve a variety of challenging problems in computational mechanics. It is a Lagrangian mesh-free method ideal for solving deformation problems. In the SPH method, the state of a system is represented by a set of particles, which possesses individual material properties and interact with each other within a specific range defined as a support domain by a weight function or smoothing function. SPH features flexibility in handling complex flow fields and in including physical effects. In theory, the basic concept of the SPH method is introduced in this paper. Some detailed numerical aspects are discussed including the kernel approximation in continuous form and particle approximation in discrete form, the properties for the smoothing functions and some of the most frequently used ones in the SPH literature, the concept of support and interface domain, SPH formulations for Navier-Stokes equation, time integration, boundary treatment, particle interaction, artificial viscosity, laminar viscosity, shifting algorithm, and so on. In applications, this paper presents an improved SPH method for modeling the diffusion process of a microneedle and using smoothed particle hydrodynamics (SPH) method to simulate the 25% cross-section stenosis blood vessel model and the 75% crosssection stenosis blood vessel model. The obtained numerical results are in close agreement with available theoretical and experimental results in the literature. As an emerging transdermal drug delivery device, microneedles demonstrate some superior potential and advantages over traditional metallic needles-on-syringes in skin injection and vaccine [1]. However, very few research papers are available. This project uses a high order continuous method, the spectral element method (SEM), and a low order discrete method, the Smoothed Particle Hydrodynamics (SPH), to investigate this new drug delivery system. The incompressible Navier-Stokes equations were solved with SEM under appropriate initial and slip boundary conditions for the transport of medicine inside microneedles of rectangular and circular cross-sections. In addition, Darcy-Brinkman equations and a concentration equation were solved with SEM under appropriate initial and boundary conditions for the infiltration of medicine solution through porous media of the dermis tissue once a microneedle enters the skin. Meanwhile, the Lagrangian form of the Navier-Stokes equations were solved with the weighted interpolation approach via numerical integrations without inverting any matrices. Results from the mesh-based SEM and the mesh-free SPH simulations revealed technical details about the processes of delivery of medicine particles through microneedles and diffusion in the skin tissue, and the medicine concentration changes with space and time. The overall effect of medicine delivery under initial concentration and conditions were simulated and the effect of drug delivery were assessed. The formation of thrombus is a complicated process. The existing literature rarely has a model for high-fidelity simulation of the effects and hazards of blood clots on blood flow. In this model, high-fidelity simulations are performed for complex human internal environments. The result of this simulation indicates high pressure area in blood vessel wall which matches the real condition of the vessel experiment
    corecore