909 research outputs found

    Postgraduate Conference 2014: Technical report 1-14

    Get PDF

    Adaptive Energy-aware Scheduling of Dynamic Event Analytics across Edge and Cloud Resources

    Full text link
    The growing deployment of sensors as part of Internet of Things (IoT) is generating thousands of event streams. Complex Event Processing (CEP) queries offer a useful paradigm for rapid decision-making over such data sources. While often centralized in the Cloud, the deployment of capable edge devices on the field motivates the need for cooperative event analytics that span Edge and Cloud computing. Here, we identify a novel problem of query placement on edge and Cloud resources for dynamically arriving and departing analytic dataflows. We define this as an optimization problem to minimize the total makespan for all event analytics, while meeting energy and compute constraints of the resources. We propose 4 adaptive heuristics and 3 rebalancing strategies for such dynamic dataflows, and validate them using detailed simulations for 100 - 1000 edge devices and VMs. The results show that our heuristics offer O(seconds) planning time, give a valid and high quality solution in all cases, and reduce the number of query migrations. Furthermore, rebalance strategies when applied in these heuristics have significantly reduced the makespan by around 20 - 25%.Comment: 11 pages, 7 figure

    A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on Space-Borne Field-Programmable Gate Arrays

    Get PDF
    Increased levels of science objectives expected from spacecraft systems necessitate the ability to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous radiation-hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier and memory modules are well suited to support the acceleration of scheduling algorithms. A methodology to design circuits specifically to accelerate Simulated Annealing Kernels (SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is the low complexity scoring calculation used for the heuristic mapping algorithm used to balance resource allocation across a coarse-grained pipelined data-path. The methodology was exercised over various kernels with different cost functions and problem sizes. These test cases were benchedmarked for execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA and a BAE RAD 750 microprocessor
    • …
    corecore