312 research outputs found

    TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features

    Full text link
    Recently, with the rapid deployment of service APIs, personalized service recommendations have played a paramount role in the growth of the e-commerce industry. Quality-of-Service (QoS) parameters determining the service performance, often used for recommendation, fluctuate over time. Thus, the QoS prediction is essential to identify a suitable service among functionally equivalent services over time. The contemporary temporal QoS prediction methods hardly achieved the desired accuracy due to various limitations, such as the inability to handle data sparsity and outliers and capture higher-order temporal relationships among user-service interactions. Even though some recent recurrent neural-network-based architectures can model temporal relationships among QoS data, prediction accuracy degrades due to the absence of other features (e.g., collaborative features) to comprehend the relationship among the user-service interactions. This paper addresses the above challenges and proposes a scalable strategy for Temporal QoS Prediction using Multi-source Collaborative-Features (TPMCF), achieving high prediction accuracy and faster responsiveness. TPMCF combines the collaborative-features of users/services by exploiting user-service relationship with the spatio-temporal auto-extracted features by employing graph convolution and transformer encoder with multi-head self-attention. We validated our proposed method on WS-DREAM-2 datasets. Extensive experiments showed TPMCF outperformed major state-of-the-art approaches regarding prediction accuracy while ensuring high scalability and reasonably faster responsiveness.Comment: 10 Pages, 7 figure

    Application of Improved Collaborative Filtering in the Recommendation of E-commerce Commodities

    Get PDF
    Problems such as low recommendation precision and efficiency often exist in traditional collaborative filtering because of the huge basic data volume. In order to solve these problems, we proposed a new algorithm which combines collaborative filtering and support vector machine (SVM). Different with traditional collaborative filtering, we used SVM to classify commodities into positive and negative feedbacks. Then we selected the commodities that have positive feedback to calculate the comprehensive grades of marks and comments. After that, we build SVM-based collaborative filtering algorithm. Experiments on Taobao data (a Chinese online shopping website owned by Alibaba) showed that the algorithm has good recommendation precision and recommendation efficiency, thus having certain practical value in the E-commerce industry

    Normalizing Item-Based Collaborative Filter Using Context-Aware Scaled Baseline Predictor

    Get PDF
    Item-based collaborative filter algorithms play an important role in modern commercial recommendation systems (RSs). To improve the recommendation performance, normalization is always used as a basic component for the predictor models. Among a lot of normalizing methods, subtracting the baseline predictor (BLP) is the most popular one. However, the BLP uses a statistical constant without considering the context. We found that slightly scaling the different components of the BLP separately could dramatically improve the performance. This paper proposed some normalization methods based on the scaled baseline predictors according to different context information. The experimental results show that using context-aware scaled baseline predictor for normalization indeed gets better recommendation performance, including RMSE, MAE, precision, recall, and nDCG
    • …
    corecore