4,742 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Acoustic Scene Classification

    Get PDF
    This work was supported by the Centre for Digital Music Platform (grant EP/K009559/1) and a Leadership Fellowship (EP/G007144/1) both from the United Kingdom Engineering and Physical Sciences Research Council

    DMLA: A Dynamic Model-Based Lambda Architecture for Learning and Recognition of Features in Big Data

    Get PDF
    Title from PDF of title page, viewed April 19, 2017Thesis advisor: Yugyung LeeVitaIncludes bibliographical references (pages 57-58)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016Real-time event modeling and recognition is one of the major research areas that is yet to reach its fullest potential. In the exploration of a system to fit in the tremendous challenges posed by data growth, several big data ecosystems have evolved. Big Data Ecosystems are currently dealing with various architectural models, each one aimed to solve a real-time problem with ease. There is an increasing demand for building a dynamic architecture using the powers of real-time and computational intelligence under a single workflow to effectively handle fast-changing business environments. To the best of our knowledge, there is no attempt at supporting a distributed machine-learning paradigm by separating learning and recognition tasks using Big Data Ecosystems. The focus of our study is to design a distributed machine learning model by evaluating the various machine-learning algorithms for event detection learning and predictive analysis with different features in audio domains. We propose an integrated architectural model, called DMLA, to handle real-time problems that can enhance the richness in the information level and at the same time reduce the overhead of dealing with diverse architectural constraints. The DMLA architecture is the variant of a Lambda Architecture that combines the power of Apache Spark, Apache Storm (Heron), and Apache Kafka to handle massive amounts of data using both streaming and batch processing techniques. The primary dimension of this study is to demonstrate how DMLA recognizes real-time, real-world events (e.g., fire alarm alerts, babies needing immediate attention, etc.) that would require a quick response by the users. Detection of contextual information and utilizing the appropriate model dynamically has been distributed among the components of the DMLA architecture. In the DMLA framework, a dynamic predictive model, learned from the training data in Spark, is loaded from the context information into a Storm topology to recognize/predict the possible events. The event-based context aware solution was designed for real-time, real-world events. The Spark based learning had the highest accuracy of over 80% among several machine-learning models and the Storm topology model achieved a recognition rate of 75% in the best performance. We verify the effectiveness of the proposed architecture is effective in real-time event-based recognition in audio domains.Introduction -- Background and related work -- Proposed framework -- Results and evaluation -- Conclusion and future wor

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft
    corecore