744 research outputs found

    Three real-space discretization techniques in electronic structure calculations

    Full text link
    A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various types of finite-elements and wavelets. This paper reports on the results of several code development projects that approach problems related to the electronic structure using these three different discretization methods. We review the ideas behind these methods, give examples of their applications, and discuss their similarities and differences.Comment: 39 pages, 10 figures, accepted to a special issue of "physica status solidi (b) - basic solid state physics" devoted to the CECAM workshop "State of the art developments and perspectives of real-space electronic structure techniques in condensed matter and molecular physics". v2: Minor stylistic and typographical changes, partly inspired by referee comment

    On Solving One-Dimensional Partial Differential Equations With Spatially Dependent Variables Using the Wavelet-Galerkin Method

    Get PDF
    International audienceThe discrete orthogonal wavelet-Galerkin method is illustrated as an effective method for solving partial differential equations (PDE's) with spatially varying parameters on a bounded interval. Daubechies scaling functions provide a concise but adaptable set of basis functions and allow for implementation of varied loading and boundary conditions. These basis functions can also effectively describe C 0 continuous parameter spatial dependence on bounded domains. Doing so allows the PDE to be discretized as a set of linear equations composed of known inner products which can be stored for efficient parametric analyses. Solution schemes for both free and forced PDE's are developed; natural frequencies, mode shapes, and frequency response functions for an Euler-Bernoulli beam with piecewise varying thickness are calculated. The wavelet-Galerkin approach is shown to converge to the first four natural frequencies at a rate greater than that of the linear finite element approach; mode shapes and frequency response functions converge similarly

    Wavelet Based Simulation of Elastic Wave Propagation

    Get PDF

    An optimal adaptive wavelet method for First Order System Least Squares

    Get PDF
    In this paper, it is shown that any well-posed 2nd order PDE can be reformulated as a well-posed first order least squares system. This system will be solved by an adaptive wavelet solver in optimal computational complexity. The applications that are considered are second order elliptic PDEs with general inhomogeneous boundary conditions, and the stationary Navier-Stokes equations.Comment: 40 page
    • …
    corecore