841 research outputs found

    Understanding motor control in humans to improve rehabilitation robots

    Get PDF
    Recent reviews highlighted the limited results of robotic rehabilitation and the low quality of evidences in this field. Despite the worldwide presence of several robotic infrastructures, there is still a lack of knowledge about the capabilities of robotic training effect on the neural control of movement. To fill this gap, a step back to motor neuroscience is needed: the understanding how the brain works in the generation of movements, how it adapts to changes and how it acquires new motor skills is fundamental. This is the rationale behind my PhD project and the contents of this thesis: all the studies included in fact examined changes in motor control due to different destabilizing conditions, ranging from external perturbations, to self-generated disturbances, to pathological conditions. Data on healthy and impaired adults have been collected and quantitative and objective information about kinematics, dynamics, performance and learning were obtained for the investigation of motor control and skill learning. Results on subjects with cervical dystonia show how important assessment is: possibly adequate treatments are missing because the physiological and pathological mechanisms underlying sensorimotor control are not routinely addressed in clinical practice. These results showed how sensory function is crucial for motor control. The relevance of proprioception in motor control and learning is evident also in a second study. This study, performed on healthy subjects, showed that stiffness control is associated with worse robustness to external perturbations and worse learning, which can be attributed to the lower sensitiveness while moving or co-activating. On the other hand, we found that the combination of higher reliance on proprioception with \u201cdisturbance training\u201d is able to lead to a better learning and better robustness. This is in line with recent findings showing that variability may facilitate learning and thus can be exploited for sensorimotor recovery. Based on these results, in a third study, we asked participants to use the more robust and efficient strategy in order to investigate the control policies used to reject disturbances. We found that control is non-linear and we associated this non-linearity with intermittent control. As the name says, intermittent control is characterized by open loop intervals, in which movements are not actively controlled. We exploited the intermittent control paradigm for other two modeling studies. In these studies we have shown how robust is this model, evaluating it in two complex situations, the coordination of two joints for postural balance and the coordination of two different balancing tasks. It is an intriguing issue, to be addressed in future studies, to consider how learning affects intermittency and how this can be exploited to enhance learning or recovery. The approach, that can exploit the results of this thesis, is the computational neurorehabilitation, which mathematically models the mechanisms underlying the rehabilitation process, with the aim of optimizing the individual treatment of patients. Integrating models of sensorimotor control during robotic neurorehabilitation, might lead to robots that are fully adaptable to the level of impairment of the patient and able to change their behavior accordingly to the patient\u2019s intention. This is one of the goals for the development of rehabilitation robotics and in particular of Wristbot, our robot for wrist rehabilitation: combining proper assessment and training protocols, based on motor control paradigms, will maximize robotic rehabilitation effects

    Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm

    Get PDF
    Body\u2013machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body\u2013machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Design and Assessment of Vibrotactile Biofeedback and Instructional Systems for Balance Rehabilitation Applications.

    Full text link
    Sensory augmentation, a type of biofeedback, is a technique for supplementing or reinforcing native sensory inputs. In the context of balance-related applications, it provides users with additional information about body motion, usually with respect to the gravito-inertial environment. Multiple studies have demonstrated that biofeedback, regardless of the feedback modality (i.e., vibrotactile, electrotactile, auditory), decreases body sway during real-time use within a laboratory setting. However, in their current laboratory-based form, existing vibrotactile biofeedback devices are not appropriate for use in clinical and/or home-based rehabilitation settings due to the expense, size, and operating complexity of the instrumentation required. This dissertation describes the design, development, and preliminary assessment of two technologies that support clinical and home-based balance rehabilitation training. The first system provides vibrotactile-based instructional motion cues to a trainee based on the measured difference between the expert’s and trainee’s motions. The design of the vibrotactile display is supported by a study that characterizes the non-volitional postural responses to vibrotactile stimulation applied to the torso. This study shows that vibration applied individually by tactors over the internal oblique and erector spinae muscles induces a postural shift of the order of one degree oriented in the direction of the stimulation. Furthermore, human performance is characterized both experimentally and theoretically when the expert–trainee error thresholds and nature of the control signal are varied. The results suggest that expert–subject cross-correlation values were maximized and position errors and time delays were minimized when the controller uses a 0.5 error threshold and proportional plus derivative feedback control signal, and that subject performance decreases as motion speed and complexity increase. The second system provides vibrotactile biofeedback about body motion using a cell phone. The system is capable of providing real-time vibrotactile cues that inform corrective trunk tilt responses. When feedback is available, both healthy subjects and those with vestibular involvement significantly reduce their anterior-posterior or medial-lateral root-mean-square body sway, have significantly smaller elliptical area fits to their sway trajectory, spend a significantly greater mean percentage time within the no feedback zone, and show a significantly greater A/P or M/L mean power frequency.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91546/1/channy_1.pd

    Physiological Targets of Artificial Gravity: The Sensory-Motor System

    Get PDF
    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orientation. The sensory systems, and in particular the vestibular system, must adapt to weightlessness on entering orbit, and again to normal gravity upon return to Earth. During this period of adaptation, which persists beyond the actual gravity-level transition itself the sensory-motor systems are disturbed. Although artificial gravity may prove to be beneficial for the musculoskeletal and cardiovascular systems, it may well have negative side effects for the neurovestibular system, such as spatial disorientation, malcoordination, and nausea

    Reaching Performance in Heathy Individuals and Stroke Survivors Improves after Practice with Vibrotactile State Feedback

    Get PDF
    Stroke causes deficits of cognition, motor, and/or somatosensory functions. These deficits degrade the capability to perform activities of daily living (ADLs). Many research investigations have focused on mitigating the motor deficits of stroke through motor rehabilitation. However, somatosensory deficits are common and may contribute importantly to impairments in the control of functional arm movement. This dissertation advances the goal of promoting functional motor recovery after stroke by investigating the use of a vibrotactile feedback (VTF) body-machine interface (BMI). The VTF BMI is intended to improve control of the contralesional arm of stroke survivors by delivering supplemental limb-state feedback to the ipsilesional arm, where somatosensory feedback remains intact. To develop and utilize a VTF BMI, we first investigated how vibrotactile stimuli delivered on the arm are perceived and discriminated. We determined that stimuli are better perceived sequentially than those delivered simultaneously. Such stimuli can propagate up to 8 cm from the delivery site, so future applications should consider adequate spacing between stimulation sites. We applied these findings to create a multi-channel VTF interface to guide the arm in the absence of vision. In healthy people, we found that short-term practice, less than 2.5 hrs, allows for small improvements in the accuracy of horizontal planar reaching. Long-term practice, about 10 hrs, engages motor learning such that the accuracy and efficiency of reaching is improved and cognitive loading of VTF-guided reaching is reduced. During practice, participants adopted a movement strategy whereby BMI feedback changed in just one channel at a time. From this observation, we sought to develop a practice paradigm that might improve stroke survivors’ learning of VTF-guided reaching without vision. We investigated the effects of practice methods (whole practice vs part practice) in stroke survivors’ capability to make VTF-guided arm movements. Stroke survivors were able to improve the accuracy of VTF-guided reaching with practice, however there was no inherent differences between practice methods. In conclusion, practice on VTF-guided 2D reaching can be used by healthy people and stroke survivors. Future studies should investigate long-term practice in stroke survivors and their capability to use VTF BMIs to improve performance of unconstrained actions, including ADLs

    Can a Plantar Pressure-Based Tongue-Placed Electrotactile Biofeedback Improve Postural Control Under Altered Vestibular and Neck Proprioceptive Conditions?

    Full text link
    We investigated the effects of a plantar pressure-based tongue-placed electrotactile biofeedback on postural control during quiet standing under normal and altered vestibular and neck proprioceptive conditions. To achieve this goal, fourteen young healthy adults were asked to stand upright as immobile as possible with their eyes closed in two Neutral and Extended head postures and two conditions of No-biofeedback and Biofeedback. The underlying principle of the biofeedback consisted of providing supplementary information related to foot sole pressure distribution through a wireless embedded tongue-placed tactile output device. Centre of foot pressure (CoP) displacements were recorded using a plantar pressure data acquisition system. Results showed that (1) the Extended head posture yielded increased CoP displacements relative to the Neutral head posture in the No-biofeedback condition, with a greater effect along the anteroposterior than mediolateral axis, whereas (2) no significant difference between the two Neutral and Extended head postures was observed in the Biofeedback condition. The present findings suggested that the availability of the plantar pressure-based tongue-placed electrotactile biofeedback allowed the subjects to suppress the destabilizing effect induced by the disruption of vestibular and neck proprioceptive inputs associated with the head extended posture. These results are discussed according to the sensory re-weighting hypothesis, whereby the central nervous system would dynamically and selectively adjust the relative contributions of sensory inputs (i.e., the sensory weights) to maintain upright stance depending on the sensory contexts and the neuromuscular constraints acting on the subject

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology
    corecore